Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps
Answer:
A new substance was formed
Explanation:
According to this question, a shiny and flexible metal called Magnesium (Mg) is burnt in air to produce a white powder that has no shiny or flexible properties, however, has more weight than the magnesium metal itself.
This is possible because a CHEMICAL CHANGE has occured, hence, a new substance has been formed. The formation of a new substance during the burning process (chemical reaction), induced the increase in mass.
Answer:
binoculars
Explanation: I am taking astronomy
Answer:
The half-life of a radioactive isotope is the time such that the initial amount of the isotope is reduced to its half.
Thus, if we start with A grams of a given radioactive isotope, after a 1 half-life, we will have A/2 grams of the radioactive isotope.
In this case, we know that the sample has 110g of a radioactive isotope.
Then, after 1 half-life, we should have half of 110g, which is:
110g/2 = 55g
Then we should have 55 g of a radioactive isotope.
The answer that is closer to this result is option d (50 g), so that is the correct one.