A red light means to stop. If you are turning from a two-way road or onto a two-way road, then you are NOT allowed to reverse your car If you can't do it
Red is typically used to indicate danger or warning, and on traffic lights, it indicates a potential hazard ahead and, as a result, serves as a signal for drivers to stop. If the traffic light turns red while you are already at a junction, you must move swiftly to the opposite side to avoid a potential accident with oncoming traffic.
If the traffic light has turned red as you approach the junction and you are just entering it, you must stop. Unless there is a sign clearly telling you not to turn left at the red light, you may do so. Give way to people and cars coming from other directions when turning.
To learn more about Traffic lights please visit -
brainly.com/question/14871009
#SPJ1
<span>373.2 km
The formula for velocity at any point within an orbit is
v = sqrt(mu(2/r - 1/a))
where
v = velocity
mu = standard gravitational parameter (GM)
r = radius satellite currently at
a = semi-major axis
Since the orbit is assumed to be circular, the equation is simplified to
v = sqrt(mu/r)
The value of mu for earth is
3.986004419 Ă— 10^14 m^3/s^2
Now we need to figure out how many seconds one orbit of the space station takes. So
86400 / 15.65 = 5520.767 seconds
And the distance the space station travels is 2 pi r, and since velocity is distance divided by time, we get the following as the station's velocity
2 pi r / 5520.767
Finally, combining all that gets us the following equality
v = 2 pi r / 5520.767
v = sqrt(mu/r)
mu = 3.986004419 Ă— 10^14 m^3/s^2
2 pi r / 5520.767 s = sqrt(3.986004419 * 10^14 m^3/s^2 / r)
Square both sides
1.29527 * 10^-6 r^2 s^2 = 3.986004419 * 10^14 m^3/s^2 / r
Multiply both sides by r
1.29527 * 10^-6 r^3 s^2 = 3.986004419 * 10^14 m^3/s^2
Divide both sides by 1.29527 * 10^-6 s^2
r^3 = 3.0773498781296 * 10^20 m^3
Take the cube root of both sides
r = 6751375.945 m
Since we actually want how far from the surface of the earth the space station is, we now subtract the radius of the earth from the radius of the orbit. For this problem, I'll be using the equatorial radius. So
6751375.945 m - 6378137.0 m = 373238.945 m
Converting to kilometers and rounding to 4 significant figures gives
373.2 km</span>
The centripetal acceleration of an object is given by the relation,

where Ac = centripetal acceleration =
R = radius of rotation = 15 m
V = speed of astronaut
Hence, 
solving this we get, V = 38.34 m/s
Below are the choices:
<span> A) The box will slow down.
B) The box's velocity will be 1 m/s.
C) The box's velocity will not change.
D) The box will experience acceleration
</span>
The answer is D) The box will experience acceleration
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.