Answer: Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Explanation: In the 1600s, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Answer:
Explanation:
A pure substance is something that is entirely made up of particles that are identical to each other.
Any substance that is not pure, must be a mixture.
We are surrounded by mixtures. The air is a mixture of gases . The oceans are a mixture of (mainly) water and salt. The solid earth is mostly rock, which is a mixture of different minerals.
Natural resources are substances we need and use, which occur naturally. Some come from living things, (example) cotton other are non-living (example) sand.
The opposite of a natural resource is a made resource.
Answer:
α = 395 rad/s²
Explanation:
Main features of uniformly accelerated circular motion
A body performs a uniformly accelerated circular motion when its trajectory is a circle and its angular acceleration is constant (α = cte). In it the velocity vector is tangent at each point to the trajectory and, in addition, its magnitude varies uniformly.
There is tangential acceleration (at) and is constant.
at = α*R Formula (1)
where
α is the angular acceleration
R is the radius of the circular path
There is normal or centripetal acceleration that determines the change in direction of the velocity vector.
Data
R = 0.0600 m :blade radius
at = 23.7 m/s² : tangential acceleration of the blades
Angular acceleration of the blades (α)
We replace data in the formula (1)
at = α*R
23.7 = α*(0.06)
α = (23.7) / (0.06)
α = 395 rad/s²
Answer:
.
Explanation:
If the mass of an object is
and the velocity of that object is
, the linear momentum of that object would be
.
Assume that the initial velocity of the mass is positive (
.) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be
.
Thus, the change in the velocity of the mass would be:
.
The change in the linear momentum of the mass would be:
.
Thus, the magnitude of the change of the linear momentum would be
.
Weight on any planet is (mass) x (acceleration of gravity there).
Acceleration of gravity on Earth is about 9.8 meters per second² .
So weight of 50 kg on Earth is (50 x 9.8) = <u>490 newtons</u>.
(That's about 110.2 pounds.)