Answer:
Travelers prefer to travel in morning because arthat time the temperature ️ is not too hot and they can easily travel here and there without any problem. and they also prefer to travel in night because moderate temperature ....
Answer:
total distance = 1868.478 m
Explanation:
given data
accelerate = 1.68 m/s²
time = 14.2 s
constant time = 68 s
speed = 3.70 m/s²
to find out
total distance
solution
we know train start at rest so final velocity will be after 14 .2 s is
velocity final = acceleration × time ..............1
final velocity = 1.68 × 14.2
final velocity = 23.856 m/s²
and for stop train we need time that is
final velocity = u + at
23.856 = 0 + 3.70(t)
t = 6.44 s
and
distance = ut + 1/2 × at² ...........2
here u is initial velocity and t is time for 14.2 sec
distance 1 = 0 + 1/2 × 1.68 (14.2)²
distance 1 = 169.37 m
and
distance for 68 sec
distance 2= final velocity × time
distance 2= 23.856 × 68
distance 2 = 1622.208 m
and
distance for 6.44 sec
distance 3 = ut + 1/2 × at²
distance 3 = 23.856(6.44) - 0.5 (3.70) (6.44)²
distance 3 = 76.90 m
so
total distance = distance 1 + distance 2 + distance 3
total distance = 169.37 + 1622.208 + 76.90
total distance = 1868.478 m
Answer:
reflection of water ,sound and water waves etc
No, that's silly.
You've got your Pfund series where electrons fall down to the 5th level,
your Brackett series where they fall to the 4th level, and your Paschen
series where they fall to the 3rd level. All of those transitions ploop out
photons at Infrared wavelengths.
THEN next you get your Balmer series, where the electrons fall in
to the 2nd level. Most of those are at visible wavelengths, but even
a few of the Balmer transitions are in the Ultraviolet.
And then there's the Lyman series, where electrons fall all the way
down to the #1 level. Those are ALL in the ultraviolet.