W=MG
w is weight
m is mass
g is gravity
W=(100 kg)(9.8 m/s)
W= 980 N
hope this helps
Answer:
No.
Explanation:
- According to Faraday's law, the induced emf in the circuit is given by :
, it is proportional to the rate of change of magnetic flux.
- In this case, a short piece of wire that is not attached to anything and move it up and down in a magnetic field. It means that the circuit is not completed here. It is an open circuit. For the induction of current, a circuit must be completed.
- Hence, no current will induce.
Potential energy due to gravity
The ball took half of the total time ... 4 seconds ... to reach its highest
point, where it began to fall back down to the point of release.
At its highest point, its velocity changed from upward to downward.
At that instant, its velocity was zero.
The acceleration of gravity is 9.8 m/s². That means that an object that's
acted on only by gravity gains 9.8 m/s of downward speed every second.
-- If the object is falling downward, it moves 9.8 m/s faster every second.
-- If the object is tossed upward, it moves 9.8 m/s slower every second.
The ball took 4 seconds to lose all of its upward speed. So it must have
been thrown upward at (4 x 9.8 m/s) = 39.2 m/s .
(That's about 87.7 mph straight up. Somebody had an amazing pitching arm.)
Water is a compound because it always has two hydrogen atoms for each oxygen atom. Water can be broken down into simpler substances. Water is a compound because pure water is composed of only H₂O molecules. Each molecule of water is a chemical combination of two hydrogen atoms and one oxygen atom. Water is a type of molecular compound.

<h3>Further explanation</h3>
- Compounds are substances composed of two or more different elements chemically combined that can be separated into simpler substances only by chemical reactions.
- Water, for example, is a compound because pure water is composed of only H₂O molecules. Each molecule of water is a chemical combination of two hydrogen atoms and one oxygen atom.
- A molecular bond or covalent bond occurs as a result of electrons can be shared between atoms. Molecular compounds have molecular (covalent) bonds.
- An ionic bond occurs as a result of electrons can be completely removed from one atom and given to another. Ionic compounds have ionic bonds.
- Examples of other molecular compounds are carbon dioxide (CO₂) and glucose (C₆H₁₂O₆). Each molecule of CO₂ is a chemical combination of two oxygen atoms and one carbon atom. Each molecule of C₆H₁₂O₆ is a chemical combination of six carbon atoms, twelve hydrogen atoms, and six oxygen atoms.
- Table salt (NaCl) is a compound because it is made from more than one kind of element (Na and Cl), but it is not a molecule because the bond that holds NaCl together is an ionic bond. An electron from the outer shell of sodium is released and taken by chlorine to reach octet conditions on both sides, that is how ionic bonds occur. Thus NaCl is an ionic compound.
- A diatomic molecule is a molecule made from two atoms of the same type. For example, oxygen gas in the atmosphere is a molecule because it contains molecular bonds. It is not a compound because it is made from atoms of only one element, i.e. oxygen. Another example is hydrogen gas, nitrogen gas, and chlorine gas.
- Elements are the simplest forms of matter and therefore cannot be broken down into simpler substances by any chemical or physical reactions. Some examples of elements include hydrogen, oxygen, carbon, sodium, iron, and sulfur. Elements can combine with other elements to synthesize compounds.
<h3>
Learn more</h3>
- Which statement best explains water’s ability to dissolve covalent compounds? brainly.com/question/8223274
- How do ionic bonds differ from covalent bonds? brainly.com/question/2092388
- Which elements can react to produce a molecular compound? brainly.com/question/867874
Keywords: water, H₂O, molecular compound, because, can be broken down into, separated, simpler substances, always has two hydrogen atoms, for each, is made of, joined together, covalent, ionic, chemical reactions, means, composed, of two or more, different elements, combined