Answer:
Al2O3 + H2SO4 = Al2(SO4)3 + H2O
Explanation:
The organelles and substances inside the organelles are smaller. On a molecular level a group that are smaller are hadrons, which are the group of particles that consist of protons and neutrons. Even smaller than hadrons are leptons, which consist of neutrinos, electons, and MANY others.
Answers and Explanation:
a)- The chemical equation for the corresponden equilibrium of Ka1 is:
2. HNO2(aq)⇌H+(aq)+NO−2
Because Ka1 correspond to a dissociation equilibrium. Nitrous acid (HNO₂) losses a proton (H⁺) and gives the monovalent anion NO₂⁻.
b)- The relation between Ka and the free energy change (ΔG) is given by the following equation:
ΔG= ΔGº + RT ln Q
Where T is the temperature (T= 25ºc= 298 K) and R is the gases constant (8.314 J/K.mol)
At the equilibrium: ΔG=0 and Q= Ka. So, we can calculate ΔGº by introducing the value of Ka:
⇒ 0 = ΔGº + RT ln Ka
ΔGº= - RT ln Ka
ΔGº= -8.314 J/K.mol x 298 K x ln (4.5 10⁻⁴)
ΔGº= 19092.8 J/mol
c)- According to the previous demonstation, at equilibrium ΔG= 0.
d)- In a non-equilibrium condition, we have Q which is calculated with the concentrations of products and reactions in a non equilibrium state:
ΔG= ΔGº + RT ln Q
Q= ((H⁺) (NO₂⁻))/(HNO₂)
Q= ( (5.9 10⁻² M) x (6.7 10⁻⁴ M) ) / (0.21 M)
Q= 1.88 10⁻⁴
We know that ΔGº= 19092.8 J/mol, so:
ΔG= ΔGº + RT ln Q
ΔG= 19092.8 J/mol + (8.314 J/K.mol x 298 K x ln (1.88 10⁻⁴)
ΔG= -2162.4 J/mol
Notice that ΔG<0, so the process is spontaneous in that direction.
The formula for the compounds in the reaction are as follows with the respective states
Carbon monoxide - CO (g)
hydrogen - H₂ (g)
methane - CH₄(g)
water - H₂O (l)
reaction of carbon monoxide with hydrogen gas gives rise to methane and water
the balanced chemical equation for the above reaction is as follows
CO(g) + 3H₂(g) --> CH₄(g) + H₂O(l)
Saliva's buffering capacity and flow of secretion are directly related to the rate and extent of demineralization. ... Saliva can act as a replenishing source and inhibit tooth demineralization during periods of low pH, while promoting tooth remineralization when the pH returns to a neutral state.