If there were an element above fluorine, its state would be a gas. This is because fluorine is located in the non-metal section of the periodic table which can all be found as a gas at room temperature.
Answer:
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Explanation:
The surface tension of these substances at 20 °C given in mN/m, is as follows:
The surface tension of Methanol is 22.70
The surface tension of Tetrabromomethane is 26.95
The surface tension of Glycerol is 64.00
The surface tension of Chloroform is 27.50
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Mixture is composed of molecules of different types. A compound can only be separated through chemical means. While a compound is a pure substance that contains 2 or more elements chemically combined together while a mixture are formed when two substances are added together without chemical bonds being formed.
Answer: Thus the volume of the balloon at this altitude is 419 L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 751 mm Hg
= final pressure of gas = 495 mm Hg
= initial volume of gas = 340 L
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the volume of the balloon at this altitude is 419 L