C.) Volume
Intensive properties, for example; color and density, do not depend on present matter.
There will be three moles of ions.
Because in an aqueous solution, HCl will break apart into <span>H<span>+ and Cl- ions.
</span></span>HCl -> <span>H+</span><span> + </span><span>C<span>l<span>−
</span></span></span>1.5 HCl -> 1.5 H+ + 1.5 Cl−<span>
So the aqueous solution will have 1.5 moles of hydrated hydrogen ions and 1.5 moles of hydrated chloride ions. So, a total of 3 moles of ions are present in the aqueous solution of 1.5 moles of HCl. </span>
The combustion reaction of octane is as follow,
C₈H₁₈ + 25/2 O₂ → 8 CO₂ + 9 H₂O
According to balance equation,
8 moles of CO₂ are released when = 114.23 g (1 mole) Octane is reacted
So,
6.20 moles of CO₂ will release when = X g of Octane is reacted
Solving for X,
X = (114.23 g × 6.20 mol) ÷ 8 mol
X = 88.52 g of Octane
Result:
88.52 g of Octane is needed to release 6.20 mol CO₂.
Answer:
In an equilibrium mixture of the three gases, PCO = PCl2 = 2.22 × 10-4 atm. The partial pressure of the product, phosgene (COCl2), is kp=(COCl2)/(CO)(Cl2) which is . So, the correct answer is 7.34.