The angular speed can be solve using the formula:
w = v / r
where w is the angular speed
v is the linear velocity
r is the radius of the object
w = ( 5 m / s ) / ( 5 cm ) ( 1 m / 100 cm )
w = 100 per second
The circumference of the Earth at the equator is listed as 24,901 miles.
So his speed is
24,901 miles per day.
Convert it to units that we have a better feel for:
(24,901 mi/da) x (1 da / 24 hrs)
= (24,901 / 24) (miles/hour)
= about 1,038 miles per hour.
You'll find a huge number of people on the internet these days,
telling you that you could not be moving at that speed and not
feel it, so therefore the Earth is not spinning, and it's not a globe.
I have a lot of feelings and comments about those people, their
lines of reasoning, and their levels of education and intelligence,
so don't get me started.
I just want to guarantee you that everything you're learning about
the Earth and the solar system in school is well founded, and it's
all based on the life's work of some of the smartest people of the
past 300 years of human history. Everything you're taught about
the Earth has good reasons behind it, whereas those other people
have nothing.
A person on Earth's equator is moving from west to east at roughly
1,038 miles per hour, relative to any point on the Earth's rotation axis.
"The distance that the force moves" is the one among the following choices given in the question that must be increased, if a simple machine reduces the strength of a force. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer helped you.
Answer:


Explanation:
A denotes Alex
M denotes Mary
r = Distance from center
Mary and Alex will have the equal displacements in equal interval of time as they are in uniform circular motion. So,

Tangential speed speed is given by

The tangential speed of Mary is 