Explanation:
To find the amount of product that would be formed from two or more reactants, we need to follow the following steps;
- Find the number of moles of the given reactants.
- Then proceed to determine the limiting reactant. The limiting reactant is the one in short supply which determines the extent of the reaction.
- Use the number of moles of the limiting reactant to find the number of moles of the product.
- Then use this number of moles to find the mass of the product
Useful expression:
Mass = number of moles x molar mass
Because anymore water will breakdown the bonds of your Oh groups
I The answer is 42 cubic cm
.54 km to dm is 5,400 decimeters. Hope this helps, have a BLESSED day! :-)
Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:
