Answer:
- C-B
- C-C
- C-N
- C-O
- C-F
Explanation:
As we move along to the <u>right in the same period, the electronegativity</u> and <u>the effective nuclear charge values are higher.</u>
The tendency is that <em>the higher these values are, the shorter the bonds will be</em>.
With that information in mind, and looking at the periodic table, the order would be:
- C-B
- C-C
- C-N
- C-O
- C-F
Where the C-F bond is the shortest among them.
Use PV=nRT to solve the equation. You need to solve for n (number of moles). Don’t forget to convert the temperature to kelvins by adding 25+273. Use 0.082057 for R.
Answer:
The strength of an acid or alkali depends on the degree of dissociation of the acid or alkali in water. The degree of dissociation measures the percentage of acid molecules that ionise when dissolved in water. He could use universal indicators or litmus paper for this.
Explanation:
(See answer for the explanation)
A covalent bond is formed between two non-metals that have similar electronegativities.
An <em>i</em><em>o</em><em>n</em><em>i</em><em>c</em><em> </em><em>b</em><em>o</em><em>n</em><em>d</em> is formed between a metal and a non-metal. Non-metals(-ve ion) are "stronger" than the metal(+ve ion) and can get electrons very easily from the metal. These two opposite ions attract each other and form the ionic bond.