Bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
Answer:
Ai --> Bii
Aii --> Bi
Aiii --> Bv
Aiv --> Biii
Av --> Biv
Explanation:
For Ai, naphthalene sublimes directly from a solid to gas when heated at around 80 degree Celsius.
For Aii, Ozone has a molecular formula of O₃.
For Aiii, weeds are normally considered as "unwanted" plants. Many people may consider using herbicides to clear the weeds in their gardens.
For Aiv, filtration is a physical method for separating solid and liquid from a mixture. A filter paper is normally used, in which the complex structure of the paper only allows fluid to pass through it, but not the solid ones. The solid left behind on the filter paper is called "residue".
For Av, photosynthesis is a chemical reaction that occurs in the leaves of a plant, which produces food for plants to survive. Carbon dioxide, water and light are required for photosynthesis to take place.
Answer:
T₂ = 721 k
Explanation:
Given data:
Initial volume = 285 mL
Initial pressure = 1.88 atm
Initial temperature = 355 K
Final temperature = ?
Final volume = 435 mL
Final pressure = 2.50 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂ T₁ / P₁V₁
T₂ = 2.50 atm × 435 mL × 355 K / 1.88 atm × 285 mL
T₂ = 386062.5 atm. mL. K /535.8 atm. mL
T₂ = 721 k
Answer:
the pH of HCOOH solution is 2.33
Explanation:
The ionization equation for the given acid is written as:

Let's say the initial concentration of the acid is c and the change in concentration x.
Then, equilibrium concentration of acid = (c-x)
and the equilibrium concentration for each of the product would be x
Equilibrium expression for the above equation would be:
![\Ka= \frac{[H^+][HCOO^-]}{[HCOOH]}](https://tex.z-dn.net/?f=%5CKa%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BHCOO%5E-%5D%7D%7B%5BHCOOH%5D%7D)

From given info, equilibrium concentration of the acid is 0.12
So, (c-x) = 0.12
hence,

Let's solve this for x. Multiply both sides by 0.12

taking square root to both sides:

Now, we have got the concentration of ![[H^+] .](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20.)
![[H^+] = 0.00465 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%200.00465%20M)
We know that, ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
pH = -log(0.00465)
pH = 2.33
Hence, the pH of HCOOH solution is 2.33.