Answer:
Code is given below:
Explanation:
.data
str1: .space 20
str2: .space 20
msg1:.asciiz "Please enter string (max 20 characters): "
msg2: .asciiz "\n Please enter string (max 20 chars): "
msg3:.asciiz "\nSAME"
msg4:.asciiz "\nNOT SAME"
.text
.globl main
main:
li $v0,4 #loads msg1
la $a0,msg1
syscall
li $v0,8
la $a0,str1
addi $a1,$zero,20
syscall #got string to manipulate
li $v0,4 #loads msg2
la $a0,msg2
syscall
li $v0,8
la $a0,str2
addi $a1,$zero,20
syscall #got string
la $a0,str1 #pass address of str1
la $a1,str2 #pass address of str2
jal methodComp #call methodComp
beq $v0,$zero,ok #check result
li $v0,4
la $a0,msg4
syscall
j exit
ok:
li $v0,4
la $a0,msg3
syscall
exit:
li $v0,10
syscall
methodComp:
add $t0,$zero,$zero
add $t1,$zero,$a0
add $t2,$zero,$a1
loop:
lb $t3($t1) #load a byte from each string
lb $t4($t2)
beqz $t3,checkt2 #str1 end
beqz $t4,missmatch
slt $t5,$t3,$t4 #compare two bytes
bnez $t5,missmatch
addi $t1,$t1,1 #t1 points to the next byte of str1
addi $t2,$t2,1
j loop
missmatch:
addi $v0,$zero,1
j endfunction
checkt2:
bnez $t4,missmatch
add $v0,$zero,$zero
endfunction:
jr $ra
Answer:
The required wall thickness is
m
Explanation:
Given:
Fluid density

Diameter of tank
m
Length of tank
m
F.S = 4
For A-36 steel yield stress
MPa,
Allowable stress 
MPa
Pressure force is given by,


Pa
Now for a vertical pipe,

Where
required thickness


m
Therefore, the required wall thickness is
m
Answer:
Explanation:
For ligation process the 1:3 vector to insert ratio is the good to utilize . By considering that we can take 1 ratio of vector and 3 ratio of insert ( consider different insert size ) and take 10 different vials of ligation ( each calculated using different insert size from low to high ) and plot a graph for transformation efficiency and using optimum transformation efficiency we can find out the insert size.
Answer:

Explanation:
given data:
pressure 1 MPa
diameter of pipe = 30 cm
average velocity = 10 m/s
area of pipe

A = 0.070 m2
WE KNOW THAT mass flow rate is given as

for pressure 1 MPa, the density of steam is = 4.068 kg/m3
therefore we have


Answer: LED have the lowest cost of operation.
Explanation:
If we ignore the initial procurement cost of the items the operational cost of any device consuming electricity is given by

Among the three item's LED consumes the lowest power to give the same level of brightness as compared to the other 2 item's thus LED's shall have the lowest operational cost.