Answer:
Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.
Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.
Answer:
Part a: The yield moment is 400 k.in.
Part b: The strain is ![8.621 \times 10^{-4} in/in](https://tex.z-dn.net/?f=8.621%20%5Ctimes%2010%5E%7B-4%7D%20in%2Fin)
Part c: The plastic moment is 600 ksi.
Explanation:
Part a:
As per bending equation
![\frac{M}{I}=\frac{F}{y}](https://tex.z-dn.net/?f=%5Cfrac%7BM%7D%7BI%7D%3D%5Cfrac%7BF%7D%7By%7D)
Here
- M is the moment which is to be calculated
- I is the moment of inertia given as
![I=\frac{bd^3}{12}](https://tex.z-dn.net/?f=I%3D%5Cfrac%7Bbd%5E3%7D%7B12%7D)
Here
- b is the breath given as 0.75"
- d is the depth which is given as 8"
![I=\frac{bd^3}{12}\\I=\frac{0.75\times 8^3}{12}\\I=32 in^4](https://tex.z-dn.net/?f=I%3D%5Cfrac%7Bbd%5E3%7D%7B12%7D%5C%5CI%3D%5Cfrac%7B0.75%5Ctimes%208%5E3%7D%7B12%7D%5C%5CI%3D32%20in%5E4)
![y=\frac{d}{2}\\y=\frac{8}{2}\\y=4"\\](https://tex.z-dn.net/?f=y%3D%5Cfrac%7Bd%7D%7B2%7D%5C%5Cy%3D%5Cfrac%7B8%7D%7B2%7D%5C%5Cy%3D4%22%5C%5C)
![\frac{M_y}{I}=\frac{F_y}{y}\\M_y=\frac{F_y}{y}{I}\\M_y=\frac{50}{4}{32}\\M_y=400 k. in](https://tex.z-dn.net/?f=%5Cfrac%7BM_y%7D%7BI%7D%3D%5Cfrac%7BF_y%7D%7By%7D%5C%5CM_y%3D%5Cfrac%7BF_y%7D%7By%7D%7BI%7D%5C%5CM_y%3D%5Cfrac%7B50%7D%7B4%7D%7B32%7D%5C%5CM_y%3D400%20k.%20in)
The yield moment is 400 k.in.
Part b:
The strain is given as
![Strain=\frac{Stress}{Elastic Modulus}](https://tex.z-dn.net/?f=Strain%3D%5Cfrac%7BStress%7D%7BElastic%20Modulus%7D)
The stress at the station 2" down from the top is estimated by ratio of triangles as
![F_{2"}=\frac{F_y}{y}\times 2"\\F_{2"}=\frac{50 ksi}{4"}\times 2"\\F_{2"}=25 ksi](https://tex.z-dn.net/?f=F_%7B2%22%7D%3D%5Cfrac%7BF_y%7D%7By%7D%5Ctimes%202%22%5C%5CF_%7B2%22%7D%3D%5Cfrac%7B50%20ksi%7D%7B4%22%7D%5Ctimes%202%22%5C%5CF_%7B2%22%7D%3D25%20ksi)
Now the steel has the elastic modulus of E=29000 ksi
![Strain=\frac{Stress}{Elastic Modulus}\\Strain=\frac{F_{2"}}{E}\\Strain=\frac{25}{29000}\\Strain=8.621 \times 10^{-4} in/in](https://tex.z-dn.net/?f=Strain%3D%5Cfrac%7BStress%7D%7BElastic%20Modulus%7D%5C%5CStrain%3D%5Cfrac%7BF_%7B2%22%7D%7D%7BE%7D%5C%5CStrain%3D%5Cfrac%7B25%7D%7B29000%7D%5C%5CStrain%3D8.621%20%5Ctimes%2010%5E%7B-4%7D%20in%2Fin)
So the strain is ![8.621 \times 10^{-4} in/in](https://tex.z-dn.net/?f=8.621%20%5Ctimes%2010%5E%7B-4%7D%20in%2Fin)
Part c:
For a rectangular shape the shape factor is given as 1.5.
Now the plastic moment is given as
![shape\, factor=\frac{Plastic\, Moment}{Yield\, Moment}\\{Plastic\, Moment}=shape\, factor\times {Yield\, Moment}\\{Plastic\, Moment}=1.5\times400 ksi\\{Plastic\, Moment}=600 ksi](https://tex.z-dn.net/?f=shape%5C%2C%20factor%3D%5Cfrac%7BPlastic%5C%2C%20Moment%7D%7BYield%5C%2C%20Moment%7D%5C%5C%7BPlastic%5C%2C%20Moment%7D%3Dshape%5C%2C%20factor%5Ctimes%20%7BYield%5C%2C%20Moment%7D%5C%5C%7BPlastic%5C%2C%20Moment%7D%3D1.5%5Ctimes400%20ksi%5C%5C%7BPlastic%5C%2C%20Moment%7D%3D600%20ksi)
The plastic moment is 600 ksi.
Answer:
ambages. pitiless or without compassion; cruel; merciless. winding, roundabout paths or ways.
Explanation:
Answer:
v = 1.076 m /s
Explanation:
Initial volume of balloon = 4/3 x 3.14 x (9.905/2)³
=508.56 m³
Final volume of balloon = 4/3 x 3.14 x (16.502/2)³
= 2351.73 m³
Increase in volume = 1843.17 m³
Cross sectional area of inlet A = 3.14 x( 1.458/2)²
A = 1.6687 m²
Volume rate of flow of air = cross sectional area x velocity of inflow
= 1 .6687 V [ V is velocity of inflow ]
Total time taken = Increase in volume / rate of flow of air
17.108 X 60 = 1843.17 / 1.6687 V
V = ![\frac{1843.17}{1.6687\times17.108\times60}](https://tex.z-dn.net/?f=%5Cfrac%7B1843.17%7D%7B1.6687%5Ctimes17.108%5Ctimes60%7D)
v = 1.076 m /s
Answer:
causes: unemployment, poverty,Lack of education,urbanization e.t.c
solutions:making people educated, giving people jobs