Answer: The mass is 980.6g of Gold.
Explanation:
We begin by looking for the number of moles equivalent to 3.0 x 10^24 gold atoms.
Using the Avogadro's number,
6.02 x 10^23 atoms of gold make up 1 mole of gold.
3.0 x 10^24 atoms would make up: 1 / 6.02 x 10^23 x 3.0 x 10^24 = 4.98moles.
Now that we know the number of moles, we can then look for the mass using the formular:
Moles = mass/ molar mass
4.98 = mass / 196.9 (atomic mass of gold)
Making "mass" the subject of formula : mass = 4.98 x 196.9= 980.6g
A outlet,electrical,batteries
Answer: Friction is the resistance to motion of one object moving relative to another. It is not a fundamental force, like gravity or electromagnetism. Instead, scientists believe it is the result of the electromagnetic attraction between charged particles in two touching surfaces.
Explanation:
Answer:
The coefficient is 1
Explanation:
CaO(s) + CO2(g) -> CaCO3(s)
In the balanced equation, the coefficient for CaO is 1
The coefficient represents the number of moles of a compound in the stoichiometry of the reaction
The amount of heat required to convert H₂O to steam is : 382.62 kJ
<u>Given data :</u>
Mass of liquid water ( m ) = 150 g
Temperature of liquid water = 43.5°C
Temperature of steam = 130°C
<h3 /><h3>Determine the amount of heat required </h3>
The amount of heat required = ∑ q1 + q2 + q3 ----- ( 1 )
where ;
q1 = heat required to change Temperature of water from 43.5°C to 100°C . q2 = heat required to change liquid water at 100°C to steam at 100°C
q3 = heat required to change temperature of steam at 100°C to 130°C
M* S
*ΔT
= 150 * 4.18 * ( 100 - 43.5 )
= 35425.5 J
moles * ΔHvap
= (150 / 18 )* 40.67 * 1000
= 338916.67 J
M * S
* ΔT
= 150 * 1.84 * ( 130 -100 )
= 8280 J
Back to equation ( 1 )
Amount of heat required = 35425.5 + 338916.67 + 8280 = 382622.17 J
≈ 382.62 kJ
Hence we can conclude that The amount of heat required to convert H₂O to steam is : 382.62 kJ.
Learn more about Specific heat of water : brainly.com/question/16559442