How much it has to drop and how heavy it is. Hope this is what you're looking for:)
Answer:
6. O₂ + Cu —> CuO
7. H₂ + Fe₂O₃ —> H₂O + Fe
8. O₂ + H₂ — > H₂O
9. H₂S + NaOH —> Na₂S + H₂O
10. Al + HCl —> H₂ + AlCl₃
Explanation:
6. Oxygen gas react with solid copper metal to form copper(II) oxide
Oxygen gas => O₂
Copper => Cu
copper(II) oxide => CuO
The equation is:
O₂ + Cu —> CuO
7. hydrogen gas and iron(III) oxide powder react to form liquid water and solid iron power
hydrogen gas => H₂
Iron(III) oxide => Fe₂O₃
Water => H₂O
Iron => Fe
The equation is:
H₂ + Fe₂O₃ —> H₂O + Fe
8. Oxygen gas react with hydrogen gas to form liquid water
Oxygen gas => O₂
hydrogen gas => H₂
Water => H₂O
The equation is:
O₂ + H₂ — > H₂O
9. Hydrogen sulphide gas is bubbled through a sodium hydroxide solution to produce sodium sulphide and liquid water
hydrogen sulphide => H₂S
sodium hydroxide => NaOH
Sodium sulphide => Na₂S
Water => H₂O
The equation is:
H₂S + NaOH —> Na₂S + H₂O
10. Hydrogen gas and aluminum chloride solutions are produced when solid aluminum react with hydrochloric acid
Aluminum => Al
Hydrochloric acid => HCl
hydrogen gas => H₂
Aluminum chloride => AlCl₃
The equation is:
Al + HCl —> H₂ + AlCl₃
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.139M 0M 0M
Δ[] -x +x +x
[]f 0.139-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .139 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.139-x ≈ 0.139
4.5x10^-4 = x^2/0.139
Then, we solve for x by first multiplying both sides by 0.139 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.007M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.007M/0.139M = .0503 or
≈5.03% dissociation.
Answer:
The atomic number of an atom is the number of protons in the nucleus or the number of electrons in a neutral atom
Explanation: