some regions of a polypeptide may coil or fold back on themselves. this is called <u>secondary structure</u> , and the coils or folds are held in place by <u>hydrogen bonds</u>
<u></u>
After translation, primary structure is just the arrangement of amino acids. The interactions between the carbonyl, amino, and side groups of the amino acid polymer backbone inside the chain result in the secondary structure of proteins. These interactions are primarily fueled by hydrogen bonds, which result in the formation of alpha helices and beta sheets, which are the primary features of proteins' secondary structures.
To create a useful three-dimensional structure, tertiary structure requires more interactions within the protein chain. Disulfide bonds between cysteines, hydrophobic contacts, ionic bonding, and dipole-dipole interactions are a few of these interactions. To create a useful, three-dimensional protein structure, several protein chains interact in quaternary structure.
<u />
To learn more about secondary structures:
brainly.com/question/15156619
#SPJ4
<u />
Answer:
179.87 g/mol
Explanation:
First you need to determine the number of each elements in the molecule. This information comes from the molecular formula.
Ze(NO3)2 tells us that there is 1 Ze atom and 2 NO3 anions per molecule. each NO3 anion will have 1 nitrogen and 3 oxygens. Due to that, one molecule of Ze(NO3)2 will have 1 atom of Ze, 2 atoms of nitrogen (N), and 6 atoms of oxygen (O).
Next you need to add all of the individual atom's molar masses to get the over all molar masses. The molar masses of each element is in the question but it can also be found on the periodic table.
molar mass of Ze(NO3)2 = 55.85g/mol + (14.01g/mol*2) + (16.00g/mol*6)
molar mass of Ze(NO3)2 = 179.87 g/mol
I hope this helps.
2.083 Liters of 6.0 M solution sulfuric acid is required. This solved using molecular calculations and Titration.
Solution: 
Moles of hydrogen gas = 
Then 12.5 moles of hydrogen will be obtained from Moles of Sulfuric acid = 12.5 mol
Molarity of the sulfuric acid solution = 6.0 M = 6 mol/ l
6M = 
where V is the volume needed

V = 2.083 l
<h3>
What is Titration?</h3>
- Titration, commonly referred to as titrimetry, is a typical quantitative chemical analysis method used in laboratories to ascertain the unidentified quantity of an analyte .
- Titration is frequently referred to as volumetric analysis because it relies heavily on volume measurements. The titrant or titrator is a reagent that is prepared as a standard solution.
- To determine concentration, a solution of the analyte or titrand reacts with a known concentration and volume of the titrant. The titration volume is the amount of titrant that has responded.
- Titrations come in a variety of forms with various protocols and objectives. Redox and acid-base titrations are the two most typical types of qualitative titrations.
To learn more about titration with the given link
brainly.com/question/2728613
#SPJ4
It's 10.
Mass = density x volume
M = 1g/ml(10ml) = 10g
Such an object makes a larger dent in the fabric of space-time than an object with little mass. (It has a greater gravitational attraction than less massive objects)
A greater force is required to accelerate such an object than a less massive object