"Unbalanced forces" show themselves as a change in the speed
or direction of an object's motion.
The only choice where the speed or direction of motion is changing
is the car that's slowing down for the light.
Answer:
<h2>15.25 N</h2>
Explanation:
A force of
is acting on a wagon along the road. The wagon weights
. Acceleration of the wagon is given as
.
Consider the block as the system, the forces acting are Frictional force, Gravitational force, Normal reaction and External force applied by us.
Gravitational Force and Normal Reaction cancel out each other.
Net External Force = Mass of system/wagon
Acceleration of wagon

has a negative sign because it opposes the motion of the wagon.
∴ Frictional Force = 15.25 N
Explanation:
Position-time graphs measure/express the position of a skater over time relative to the start or finish of the race (depends on how it is used). Note: are the skaters in line vertically or horizontally? Like is one directly behind the other or are they next to each other?
If the two skaters are in line horizontally with each other, then their position will be the same relative to the start or finish of the race. This means if one passes the other one, the position would be different for all times after they pass. On the graph, it would look like one single line at the start (as position is same) which splits into 2 (representing the new difference in position due to 1 passing the other.
If the two skaters are in line vertically, their lines on the graph will appear parallel to each other (assuming they are going same speed) because the position is changing at the same rate, one is just reaching the same point after the other. If the skater behind overtakes the one in front. The lines on the graph will cross and continue either in parallel but with the other line on top to represent the moment where their position is the same right before they pass and after, where the second skater is now in front.
Hope this helped!
B) equal in magnitude but opposite direction