1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
2 years ago
13

Which region of the Sun is typically about 6,000 C?

Physics
1 answer:
stich3 [128]2 years ago
4 0

the reign of the sun is very an important because the typically is about the size of 6,000 ceilometers

You might be interested in
How are land-use laws in the United States different from the land-use laws inherited from England?
exis [7]

private property owners in the United States can restrict public access to their land

5 0
2 years ago
During a storm, a tree limb breaks off and comes to rest across a barbed wire fence at a point that is not in the middle between
Whitepunk [10]

Answer:

a. 12.12°

b. 412.04 N

Explanation:

Along vertical axis, the equation can be written as

T_1 sin14 + T_2sinA = mg

T_2sinA = mg - T_1sin12.5           ....................... (a)

Along horizontal axis, the equation can be written as

T_2×cosA = T_1×cos12.5    ......................... (b)

(a)/(b) given us

Tan A = (mg - T_1sin12.5) / T_1 cos12.5

 = (176 - 413sin12.5) / 413×cos12.5

A = 12.12 °

(b) T2 cosA = T1 cos12.5

T2 = 413cos12.5/cos12.12

= 412.04 N

4 0
3 years ago
Read 2 more answers
The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartF
4vir4ik [10]

Answer:

\kappa = \frac{1}{2 b}

Explanation:

The equation for kappa ( κ) is

\kappa = \frac{a}{a^2 + b^2}

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a

\kappa (a) = \frac{a}{a^2 + b^2}

Now, the conditions to find a maximum at a_0 are:

\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0

\frac{d^2\kappa(a)}{da^2}  \left | _{a=a_0} < 0

Taking the first derivative:

\frac{d}{da} \kappa = \frac{d}{da}  (\frac{a}{a^2 + b^2})

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da}  (\frac{1}{a^2 + b^2} )

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1)  (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da}  (a^2+b^2)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a  (\frac{1}{(a^2 + b^2)^2} ) (2* a)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2}  -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 -  2 a^2)

\frac{d}{da} \kappa = \frac{b^2 -  a^2}{(a^2 + b^2)^2}

This clearly will be zero when

a^2 = b^2

as both are greater (or equal) than zero, this implies

a=b

The second derivative is

\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 -  a^2}{(a^2 + b^2)^2} )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 -  a^2 ) + (b^2 -  a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2}  )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2  a ) + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

\frac{d^2}{da^2} \kappa = \frac{-2  a}{(a^2 + b^2)^2} + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

We dcan skip solving the equation noting that, if a=b, then

b^2 -  a^2 = 0

at this point, this give us only the first term

\frac{d^2}{da^2} \kappa = \frac{- 2  a}{(a^2 + a^2)^2}

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is

\kappa = \frac{b}{b^2 + b^2}

\kappa = \frac{b}{2* b^2}

\kappa = \frac{1}{2 b}

3 0
3 years ago
A car goes from point A to point B, five miles away and then returns to point A. The car is going 15 mph.
slavikrds [6]
B will be your answer hope this helped
8 0
2 years ago
In a thundercloud there may be an electric charge of 41 C near the top of the cloud and −41 C near the bottom of the cloud. If t
Andre45 [30]

Answer:

F = 236063.6N

Explanation:

Please see attachment below.

4 0
2 years ago
Other questions:
  • Which statement correctly compares the speed of light
    15·2 answers
  • What type of energy to high frequency waves have?
    14·1 answer
  • A dragster going 15m/s increases its velocity to 25 m/s north in 4 seconds.
    9·1 answer
  • a body traveled a distance 2m in 2s and 2.2m in the next 2s. what will be the velocity at the end of the Start ​
    15·1 answer
  • The unit of force, Newton is a derived unit. (give reasons) ​
    8·1 answer
  • Which scientist stated that all cells arise from preexisting cells?
    6·2 answers
  • A girl running around a circular track of radius 200 m completes one
    9·1 answer
  • Can we make electromagnet with copper​
    12·2 answers
  • 2h 10min expressed in seconds?<br> Step by step please
    12·2 answers
  • A particle with charge Q and mass M has instantaneous speed u1 when it is at a position where the electric potential is V1. At a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!