To solve this problem we will apply the concepts related to volume, as a function of length and area, as of mass and density. Later we will take the same concept of resistance and resistivity, equal to the length per unit area. Once obtained from the known constants it will be possible to obtain the area by matching the two equations:
Mass of copper wire
Density
Resistively of copper 
Resistance (R) = 0.390\Omega
Volume is defined as,

(1)
We know that,


(2)
Multiplying equation we have




Therefore the length of the wire is 1.68m
Answer:
The number of turns in the solenoid is 230.
Explanation:
Given that,
Rate of change of current, 
Induced emf, 
Current, I = 1.5 A
Magnetic flux, 
The induced emf through the solenoid is given by :

or
........(1)
The self inductance of the solenoid is given by :
.........(2)
From equation (1) and (2) we get :

N is the number of turns in the solenoid


N = 229.28 turns
or
N = 230 turns
So, the number of turns in the solenoid is 230. Hence, this is the required solution.
-- The net force on the box is 2N to the left.
-- The box will move to the left and accelerate to the left.
-- F=ma . a=F/m . a=(2N)/(4kg).
a = 0.5 m/s^2 to the left.
Answer:
9000 kg/m³
Explanation:
Density is mass per volume.
D = M / V
D = (9.00 kg) / (0.100 m × 0.100 m × 0.100 m)
D = 9000 kg/m³