Answer:
spacing between the slits is 405.32043 ×
m
Explanation:
Given data
wavelength = 610 nm
angle = 2.95°
central bright fringe = 85%
to find out
spacing between the slits
solution
we know that spacing between slit is
I = 4
× cos²∅/2
so
I/4
= cos²∅/2
here I/4
is 85 % = 0.85
so
0.85 = cos²∅/2
cos∅/2 = √0.85
∅ = 2 ×
0.921954
∅ = 45.56°
∅ = 45.56° ×π/180 = 0.7949 rad
and we know that here
∅ = 2π d sinθ / wavelength
so
d = ∅× wavelength / ( 2π sinθ )
put all value
d = 0.795 × 610×
/ ( 2π sin2.95 )
d = 405.32043 ×
m
spacing between the slits is 405.32043 ×
m
Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
= 
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
= 2.348 N m²/C
Answer:
Vi = 8.28 m/s
Explanation:
This problem is related to the projectile motion.
As we know there are two components of motion associated with this, the horizontal component and vertical component.
The horizontal distance covered by the ball is
Vx*t = x
Vx*t = 5.3
Vx = 5.3/t eq. 1
Also we know that
Vx = Vicos(60)
Vx = Vi*0.5 eq. 2
equate eq. 1 and eq. 2
5.3/t = Vi*0.5
5.3/0.5 = Vi*t
Vi*t = 10.6 eq. 3
The vertical distance is
Vy = y1 + Vyi*t - 0.5gt²
also we know that
Vyi = Visin(60)
Vyi = Vi*0.866
It is given that V1 = 1.9 m and and Vy = 3 m is the vertical distance
3 = 1.9 + Vi*0.866*t - 0.5gt²
3 = 1.9 + Vi*0.866*t - 0.5(9.8)t²
3 = 1.9 + 0.866(Vi*t) - 0.5(9.8)t²
3 = 1.9 + 0.866(Vi*t) - 0.5(9.8)t²
1.1 = 0.866(Vi*t) - 4.9t²
0.866(Vi*t) = 4.9t² + 1.1
substitute Vi*t = 10.6 in above equation
0.866(10.6) = 4.9t² + 1.1
9.18 = 4.9t² + 1.1
4.9t² = 8.08
t² = 8.08/4.9
t² = 1.648
t = 1.28 sec
Finally, initial speed can be found by substituting the value of t into eq. 3
Vi*t = 10.6
Vi = 10.6/t
Vi = 10.6/1.28
Vi = 8.28 m/s