Answer:
Question 1)
a) The speed of the drums is increased from 2 ft/s to 4 ft/s in 4 s. From the below kinematic equations the acceleration of the drums can be determined.

This is the linear acceleration of the drums. Since the tape does not slip on the drums, by the rule of rolling without slipping,

where α is the angular acceleration.
In order to continue this question, the radius of the drums should be given.
Let us denote the radius of the drums as R, the angular acceleration of drum B is
α = 0.5/R.
b) The distance travelled by the drums can be found by the following kinematics formula:

One revolution is equal to the circumference of the drum. So, total number of revolutions is

Question 2)
a) In a rocket propulsion question, the acceleration of the rocket can be found by the following formula:

b) 
It often requires STANDARD reaction time
Answer:
Fy=107.2 N
Explanation:
Conceptual analysis
For a right triangle :
sinβ = y/h formula (1)
cosβ = x/h formula (2)
x: side adjacent to the β angle
y: opposite side of the β angle
h: hypotenuse
Known data
h = T = 153.8 N : rope tension
β= 44.2°with the horizontal (x)
Problem development
We apply the formula (1) to calculate Ty : vertical component of the rope force.
sin44.2° = Ty/153.8 N
Ty = (153.8 N ) *(sen44.2°)= 107.2 N directed down
for equilibrium system
Fy= Ty=107.2 N
Fy=107.2 N upward component of the force acting on the stake
Answer:increases
Explanation:
If we are going upward in an elevator from the ground floor to the top floor then it indicates that your distance from the center of the earth is increasing while the time period remains the same.
If the radial distance is increased then the tangential velocity of the object must be increased because the time period is the same.
This can be best explained by taking an example of a car moving in a circle of radius r. If radial is increased for the same period then the car has to travel at a higher velocity to make in time.
The bigger molecule has more interactions and hence the higher b.p. CH3CH2OCH2CH3 is a bigger molecule than CH4 and CH3CH3, so has more dispersion forces. It also has dipole-dipole forces due to the polarised C-O bonds. CH3OH and CH3CH2OH have hydrogen bonds due to the very electronegative O atom bonded to the H atom
God bless