The standard ambient temperature and pressure are
Temperature =298 K
Pressure = 1atm
The density of gas is 1.5328 g/L
density = mass of gas per unit volume
the ideal gas equation is
PV = nRT
P = pressure = 1 atm
V = volume
n = moles
R= gas constant = 0.0821 Latm/mol K
T = 298 K
moles = mass / molar mass
so we can write
n/V = density / molar mass
Putting values



Thus molar mass of gas is 37.50g/mol
Answer: released to; absorbed from
- In an exothermic reaction, energy is released to the surroundings.
- In an endothermic reaction, energy is absorbed from the surroundings.
Explanation:
An exothermic reaction is a chemical reaction that occurs spontaneously and brings about the release of energy to the surroundings. Hence, the reacting vessel feels hot as the reaction proceeds.
An endothermic reaction, on the other hand, does not occur spontaneously and proceed only when energy is absorbed from the surroundings. Hence, the reacting vessel feels cold as the reaction proceeds.
I don’t know if this would help but my cousin said this: Molecular weight of chlorine = 71, so 7.1/71 = 0.1 mol of Cl2
Answer: 4.46 x 10^-4M
Explanation:
The pH of a solution is the concentration of hydrogen ion concentration in the solution. Mathematically, it is expressed as pH = -log(H+), where H+ is the concentration of hydrogen ion
On the pH scale, readings are from 1 to 14.
- pH values less than 7 are regarded as acidic. So, the solution with pH 3.35 is said to be acidic, and will produce hydrogen ions.
3.35 = -log(H+)
(H+) = Antilog (-3.35)
(H+) = 0.000446M
Place (H+) in standard form
(H+) = 4.46 x 10^-4M
Thus, the concentration of hydrogen ion in the solution with pH 3.35 is 4.46 x 10^-4M
A) It becomes a negative ion