I Think Its True My Dude Or Dudette
.
Hope this helps
.
Zane
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))
The earth's liquid outer core is the major cause of the earth’s magnetic field.
<h3>
What is magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, a vector field. A force acting on a charge while it travels through a magnetic field is perpendicular to both the charge's motion and the magnetic field. The magnetic field of a permanent magnet attracts or repels other magnets as well as ferromagnetic elements like iron. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilised in electromagnets, and electric fields that change over time produce magnetic fields that surround magnetised things.
To learn more about magnetic field,visit:
brainly.com/question/11514007
#SPJ4
Answer:
a=positive
b=0
c=positive
d=negative
Explanation:
a=acceleration depends on the speed and time. if the speed and time are increasing at the same rate, the acceleration value will be positive as the vehicle is speeding up.
b=the speed and time are not increasing, therefore the vehicle is either stationary or travelling at a steady pace.
c=same explanation as a
d=the speed and time are not increasing at the same rate as the speed is decreasing. this means that the car is slowing down
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)