Answer:
K.E = 0.0075 J
Explanation:
Given data:
Mass of the ball = 1.5 kg
radius, r = 50 cm = 0.5 m
Angular speed, ω = 12 rev/min = (12/60) rev/sec = 0.2 rev/sec
Now,
the kinetic energy is given as:
K.E = 
where,
I is the moment of inertia = mr²
on substituting the values, we get

or
K.E = 0.0075 J
Answer: 1.55 x 10⁴ Nm²c^-1
Explanation: The electric flux, electric field intensity and area are related by the formulae below.
Φ= EAcosθ,
Where Φ= electric flux (Nm²c^-1)
E =electric field intensity (N/m²)
A = Area (m²)
θ= this is angle between the planar area and the magnetic flux
For our question E=3.80KN/c= 3800 N/c
A= 0.700 x 0.350= 0.245m²
θ= 0° ( this is because the electric field was applied along the x axis, thus the electric flux will be parallel to the area).
Hence Φ= 3800 x 0.245 x cos(0)
= 3800 x 0.245 x 1 (value of cos 0° =1)
= 1.55 x 10⁴ Nm²c^-1
Thus the electric field is 1.55 x 10⁴ Nm²c^-1
This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
Answer:
The Answer is B because the material the object is made of, the position, or the color have absolutely nothing to do with gravitational potential energy
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e