Answer:
106 mL
Explanation:
In order to be able to answer this question, you must understand what the density of a substance tells you.
The density of a substance is nothing more than the mass of that substance that occupies one unit of volume.
In your case, the density of ethanol is given in Grams per milliliter, which means that one unit of volume will be
1 mL
.
So, ethanol has a density of
0.785 g mL
−
1
, which is equivalent to saying that if you take exactly
1 mL
of ethanol and weigh it, you will end up with a mass of
0.785 g
.
Now, you know that the volume you're using has a mass of
83.3 g
. Well, if you get
0.785 g
for every
1 mL
of ethanol, it follows that this much mass will correspond to a volume of
83.3
g ethanol
⋅
ethanol's density
1 mL
0.785
g ethanol
=
106.11 mL
Rounded to three sig figs, the answer will be
V
ethanol
=
106 mL
Hope this helps
Answer:
The red blood cells will burst
Explanation:
When the red blood cells are placed in pure water, they will gain water by osmosis, swell and finally burst due to their weak cell membranes. This process is referred to as hemolysis.
Osmolarity=osmole of the solute/litres of the solution
ionic equation for dissociation of CaCl2 is
CaCl2--->Ca2+ +2Cl-
total osmoles for reaction are 1(Ca2+) + 2(Cl-)= 3 osmoles
therefore
0.50 moles of CaCl2 x 3 osmoles/ 1mole of CaCl2 = 1.5osmoles
osmolarity=1.5 /1.0 L=1.5 osmol/l
Answer:
The calculated concentration of sodium thiosulphate solution will be less than the actual value.
Explanation:
When IO3^2- solution is added to KI solution, I2 gas is released ,then sulphuric acid is now added to facilitate reduction. In order to prevent the escape of iodine (I2) gas ,the solution must immediately be titrated with thiosulphate.
If the solution is not immediately titrated with thiosulphate, the concentration of iodine available in the system decreases. When this occurs, it will also cause a decrease in the amount of iodine available to react with thiosulphate thus decreasing the concentration of thiosulphate obtained from calculation
Gain or lose.
The exchange of electrons in chemical bonding seeks to fulfill the octet rule. There are some exceptions, such as with hydrogen and helium, whose valence shells have a capacity of two electrons.