Swimming: Knowing I would not sink made feel safe.
Taking off in an aircraft: I felt heavier.
<u>Explanation:</u>
The buoyant force originates from the weight applied to the item by the liquid. Since the weight increments as the profundity press, the base of an article are constantly bigger than the power on the top - consequently the net upward power.
It follows up on an article inverse to gravity by liquid which is being submerged mostly or totally in the liquid. It contradicts the heaviness of the item. The buoyant force is given by volume dislodged by an item into the thickness of liquid into gravitational quickening.
Answer:
See the answers below.
Explanation:
Momentum is defined as the product of mass by velocity, and can be calculated by means of the following expression.

where:
P = Momentum [kg*m/s]
m = mass = 10 [g] = 0.01 [kg]
v = velocity = 400 [m/s]
i)
![P=0.01*400\\P=4[kg*m/s]](https://tex.z-dn.net/?f=P%3D0.01%2A400%5C%5CP%3D4%5Bkg%2Am%2Fs%5D)
ii)
The momentum of the gun is equal to zero, because it does not move before being fired, the weapon only moves after having fired the weapon.

iii)
Since the momentum is conserved before and after the shot, the same momentum given to the bullet is equal to the momentum received by the gun.

![v_{recoil}=P/m\\v_{recoil}= 4/2\\v_{recoil}=2[m/s]](https://tex.z-dn.net/?f=v_%7Brecoil%7D%3DP%2Fm%5C%5Cv_%7Brecoil%7D%3D%204%2F2%5C%5Cv_%7Brecoil%7D%3D2%5Bm%2Fs%5D)
Answer:
The force of the ball on the bat is same as the force of the bat on the ball.
Explanation:
A bat hits the ball and the ball moves to the out filed.
According to the Newton's third law, for every action there is an equal and opposite reaction.
The action and the reaction forces acts on the two different bodies but the magnitude of the force is same.
As the ball is hitted by the bat, the bat exerts the force on the ball and the same force is exerted on the bat by the ball according to the Newton's third law.
So, the force of the ball on the bat is same as the force of the bat on the ball but the direction of force is opposite.
Answer:
a) F = μk mg Cosθ
b) F = 279.78 N
Explanation:
a) F = μk R
Based on the description in the question, the horizontal reaction is:
R = mg Cosθ
The force required to move the box with constant speed in terms of m, μk, θ, and g is :
F = μk mg Cosθ
b) If m = 90 kg
g = 9.8 m/s²
μk=0.35
θ = 25⁰
Force required to slide the 90-kg patient across a floor at constant speed by pulling on him at an angle of 25∘ above the horizontal will be:
F = μk mg Cosθ
F = 0.35 * 90 * 9.8 * cos25
F = 279.78 N