1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
8

A tennis ball is dropped from a height of 10.0 m. It rebounds off the floor and comes up to a height of only 4.00 m on its first

rebound. (Ignore the small amount of time the ball is in contact with the floor.) (a) Determine the ball’s speed just before it hits the floor on the way down. (b) Determine the ball’s speed as it leaves the floor on its way up to its first rebound height. (c) How long is the ball in the air from the time it is dropped until the time it reaches its maximum height on the first rebound?

Physics
1 answer:
Dominik [7]3 years ago
6 0

Answer:

a) V=14.01 m/s

b) V=8.86 \, m/s

c)t = 2.33s

Explanation:

Our most valuable tool in solving this problem will be the conservation of mechanical energy:

E_m = E_k +E_p

That is, mechanical energy is equal to the sum of potential and kinetic energy, and  the value of this E_m mechanical energy will remain constant. (as long as there is no dissipation)

For a point particle, we have that kinetic energy is:

E_k = \frac{1}{2} m \, V^2

Where m is the mass, and V is the particle's velocity,

Potential energy on the other hand is:

E_p= m\, g\, h

where g is the acceleration due to gravity (g=9.81 \, m/s^2) and h is the height of the particle. How do we define the height? It's a bit of an arbitrary definition, but we just need to define a point for which h=0, a "floor". conveniently we pick the actual floor as our reference height, but it could be any point whatsoever.

Let's calculate  the mechanical energy just before the ball is dropped:

As we drop the ball, speed must be initially zero, and the height from which we drop it is 10 meters, therefore:

E_m = \frac{1}{2}m\,0^2+ mg\cdot 10 \,m\\E_m=mg\cdot10 \, m

That's it, the actual value of m is not important now, as we will see.

Now, what's the potential energy at the bottom? Let's see:

At the bottom, just before we hit the floor, the ball is no longer static, it has a velocity V that we want to calculate, on the other hand, it's height is zero! therefore we set h=0

E_m = \frac{1}{2}m\,V^2+ mg\cdot 0\\\\E_m = \frac{1}{2}m\,V^2

So, at the bottom, all the energy is kinetic, while at the top all the energy is potential, but these energies are the same! Because of conservation of mechanical energy. Thus we can set one equal to the other:

E_m = \frac{1}{2}m\,V^2 = mg\cdot 10m\\\\\\ \frac{1}{2}m\,V^2 = mg\cdot 10m\\\\V = \sqrt[]{2g\cdot 10m} \\

And so we have found the velocity of the ball as it hits the floor.

V = \sqrt[]{2g\cdot 10m}=14.01\, m/s

Now, after the ball has bounced, we can again do an energy analysis, and we will get the same result, namely:

V = \sqrt[]{2g\cdot h}

where h is the maximum height of the ball, and v is the maximum speed of the ball (which is always attained at the bottom). If we know that now the height the ball achieves is 4 meters, plugging that in:

V = \sqrt[]{2g\cdot 4m} =8.86 \, m/s

Now for C, we need to know for how long the ball will be in the air from the time we drop it from 10 meters, and how long it will take the ball to reach its new maximum height of 4 meters.

As the acceleration of gravity is a constant, that means that the velocity of the ball will change at a constant rate. When something changes at a constant rate, what is its average?  It's the average between initial and final velocity, look at diagram to understand. The area under the Velocity vs time curve is the displacement of the ball, and:

V_{avg}\cdot t=h\\t=h/V_{avg}

what's the average speed when the ball is descending?

V_{avg}=\frac{1}{2} (14.01\, m/s+0)=7 \, m/s

so the time it takes the ball to go down is:

t=h/V_{avg}=\frac{10m}{7m/s} =1.43s\\

Now, when it goes up, it's final and initial speeds are 0 and 8.86 meters per second, thus the average speed is:

V_{avg}=\frac{1}{2} (8.86\, m/s+0)=4.43 \, m/s

and the time it takes to go up is:t=h/V_{avg}=\frac{4m}{4.43m/s} =0.90s

When we add both times , we get:

t_{total}=t_{down}+t_{up}=1.43s+0.90s = 2.33s

You might be interested in
A 3.0-kg block moves up a 40o incline with constant speed under the action of a 26-N force acting up and parallel to the incline
CaHeK987 [17]

Answer:

it is very hard question for me sorry i cant solve it

3 0
3 years ago
A sound wave has a frequency of 425Hz. What is the period of this wave? a) 0.00235 b) 0.807 c) 425 d) 850
swat32

the answer is a) 0.00235 because 1/425=0.00235. hope I helped!

3 0
3 years ago
Why is vehicle systems forensics useful today? Cars are less computerized than before More people own cars Devices like smartpho
kvasek [131]

Answer:

Devices like smartphones can interface with cars and leave evidence

Explanation:

Vehicle system forensic relates to digital data stored in a vehicles system.

Bluetooth connection times can be used to figure out at what time the owner was near his car. e.g. between a smart-watch and car infotainment system

6 0
2 years ago
If you wanted the pitch of a horn to drop relative to an observer, which way would you move the horn, relative to where that obs
Vladimir [108]
We assume that horn releases sound of constant frequency. In order for observer to observe different frequency either horn or observer or both must move.

This happens due to Doppler effect. It states that when position of source of sound and observer relative to each other changes, the observed frequency also changes. If the source emits sound of constant frequency than observed frequency will be either higher or lower than original.

When distance between source and observer increases the observed frequency will be lower. This is because same number of sound waves must cover greater distance so they have greater wavelength.
When distance between source and observer decreases the observed frequency will be higher. This is because same number of sound waves must cover smaller distance so they have smaller wavelength. 

Wavelength and frequency are inversely proportional meaning when one increases the other drecreases.

From this explanation we can find answer for our question. <span>If we wanted the pitch of a horn to drop relative to an observer we need to move horn away from an observer.</span>
3 0
2 years ago
If a particle's position is given by x=4-12t+3t^2, where t is in seconds and x is in meters, what is its velocity at t=1 second?
andreyandreev [35.5K]

Answer:

v = -6m/s

Explanation:

x=4-12t+3t^2

\frac{dx}{dt}=-12+6t

For t = 1:

\frac{dx}{dt}=-6

3 0
3 years ago
Other questions:
  • What would the weight of an astronaut be on Neptune if his mass is 68 kg and acceleration of gravity of Neptune is 11.15 m/s^2?
    13·1 answer
  • 1. In a motor vehicle crash, as a car crushes, it absorbs some of the force of the collision.
    7·2 answers
  • a soccer player kicks a ball with a speed of 30 m/s at an angle of 10. how long does the ball stay in the air?
    12·2 answers
  • Two children hang by their hands from the same tree branch. The branch is straight, and grows out from the tree trunk at an angl
    6·1 answer
  • Use the graph below to answer the following question: What is happening to the object's velocity?
    13·1 answer
  • Help me please. I don't understand this at all
    5·2 answers
  • The gravitational potential energy of an object is due to
    10·1 answer
  • How many degrees equal π in radians? How many revolutions (turns) equal π radians? ​
    10·1 answer
  • Question 2 A horizontal line on a position vs time graph means the object is O moving faster. O at rest O slowing down. O moving
    9·1 answer
  • QC In ideal flow, a liquid of density 850 kg / m³ moves from a horizontal tube of radius 1.00cm into a second horizontal tube of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!