1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
8

A tennis ball is dropped from a height of 10.0 m. It rebounds off the floor and comes up to a height of only 4.00 m on its first

rebound. (Ignore the small amount of time the ball is in contact with the floor.) (a) Determine the ball’s speed just before it hits the floor on the way down. (b) Determine the ball’s speed as it leaves the floor on its way up to its first rebound height. (c) How long is the ball in the air from the time it is dropped until the time it reaches its maximum height on the first rebound?

Physics
1 answer:
Dominik [7]3 years ago
6 0

Answer:

a) V=14.01 m/s

b) V=8.86 \, m/s

c)t = 2.33s

Explanation:

Our most valuable tool in solving this problem will be the conservation of mechanical energy:

E_m = E_k +E_p

That is, mechanical energy is equal to the sum of potential and kinetic energy, and  the value of this E_m mechanical energy will remain constant. (as long as there is no dissipation)

For a point particle, we have that kinetic energy is:

E_k = \frac{1}{2} m \, V^2

Where m is the mass, and V is the particle's velocity,

Potential energy on the other hand is:

E_p= m\, g\, h

where g is the acceleration due to gravity (g=9.81 \, m/s^2) and h is the height of the particle. How do we define the height? It's a bit of an arbitrary definition, but we just need to define a point for which h=0, a "floor". conveniently we pick the actual floor as our reference height, but it could be any point whatsoever.

Let's calculate  the mechanical energy just before the ball is dropped:

As we drop the ball, speed must be initially zero, and the height from which we drop it is 10 meters, therefore:

E_m = \frac{1}{2}m\,0^2+ mg\cdot 10 \,m\\E_m=mg\cdot10 \, m

That's it, the actual value of m is not important now, as we will see.

Now, what's the potential energy at the bottom? Let's see:

At the bottom, just before we hit the floor, the ball is no longer static, it has a velocity V that we want to calculate, on the other hand, it's height is zero! therefore we set h=0

E_m = \frac{1}{2}m\,V^2+ mg\cdot 0\\\\E_m = \frac{1}{2}m\,V^2

So, at the bottom, all the energy is kinetic, while at the top all the energy is potential, but these energies are the same! Because of conservation of mechanical energy. Thus we can set one equal to the other:

E_m = \frac{1}{2}m\,V^2 = mg\cdot 10m\\\\\\ \frac{1}{2}m\,V^2 = mg\cdot 10m\\\\V = \sqrt[]{2g\cdot 10m} \\

And so we have found the velocity of the ball as it hits the floor.

V = \sqrt[]{2g\cdot 10m}=14.01\, m/s

Now, after the ball has bounced, we can again do an energy analysis, and we will get the same result, namely:

V = \sqrt[]{2g\cdot h}

where h is the maximum height of the ball, and v is the maximum speed of the ball (which is always attained at the bottom). If we know that now the height the ball achieves is 4 meters, plugging that in:

V = \sqrt[]{2g\cdot 4m} =8.86 \, m/s

Now for C, we need to know for how long the ball will be in the air from the time we drop it from 10 meters, and how long it will take the ball to reach its new maximum height of 4 meters.

As the acceleration of gravity is a constant, that means that the velocity of the ball will change at a constant rate. When something changes at a constant rate, what is its average?  It's the average between initial and final velocity, look at diagram to understand. The area under the Velocity vs time curve is the displacement of the ball, and:

V_{avg}\cdot t=h\\t=h/V_{avg}

what's the average speed when the ball is descending?

V_{avg}=\frac{1}{2} (14.01\, m/s+0)=7 \, m/s

so the time it takes the ball to go down is:

t=h/V_{avg}=\frac{10m}{7m/s} =1.43s\\

Now, when it goes up, it's final and initial speeds are 0 and 8.86 meters per second, thus the average speed is:

V_{avg}=\frac{1}{2} (8.86\, m/s+0)=4.43 \, m/s

and the time it takes to go up is:t=h/V_{avg}=\frac{4m}{4.43m/s} =0.90s

When we add both times , we get:

t_{total}=t_{down}+t_{up}=1.43s+0.90s = 2.33s

You might be interested in
You are riding in an elevator that is accelerating upward. Suppose you stand on a scale. The reading on the scale is __________.
tatyana61 [14]

Given the following choices;

A) less than your true weight, mg.

B) equal to your true weight, mg.

C) more than your true weight, mg.

D) could be more or less than your true weight, mg, depending on the value of the speed.

The answer is; C

This is due to G-force. These are the perception of the weight of an object that is accelerating against gravity. We experience 1 g force on the surface of the earth because the ground exerts an upward exertion against gravity preventing as from falling to the center of the earth.  

8 0
3 years ago
Read 2 more answers
Consider a model of a hydrogen atom in which an electron is in a circular orbit of radius r = 5.92×10−11 m around a stationary p
DaniilM [7]

Answer:

2.068 x 10^6 m / s

Explanation:

radius, r = 5.92 x 10^-11 m

mass of electron, m = 9.1 x 10^-31 kg

charge of electron, q = 1.6 x 10^-19 C

As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.

centripetal force = \frac{mv^{2}}{r}

Electrostatic force = \frac{kq^{2}}{r^{2}}

where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2

So, balancing both the forces we get

\frac{kq^{2}}{r^{2}}=\frac{mv^{2}}{r}

v=\sqrt{\frac{kq^{2}}{mr}}

v=\sqrt{\frac{9\times 10^{9}\times1.6\times 10^{-19}\times 1.6\times 10^{-19}}{9.1\times 10^{-31}\times 5.92\times10^{-11}}}

v = 2.068 x 10^6 m / s

Thus, the speed of the electron is give by  2.068 x 10^6 m / s.

6 0
3 years ago
A kangaroo jumps straight up to a vertical height of 1.45 m. How long was it in the air before returning to Earth?
dexar [7]

Answer:

1.08 s

Explanation:

From the question given above, the following data were obtained:

Height (h) reached = 1.45 m

Time of flight (T) =?

Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:

Height (h) = 1.45 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

h = ½gt²

1.45 = ½ × 9.8 × t²

1.45 = 4.9 × t²

Divide both side by 4.9

t² = 1.45/4.9

Take the square root of both side

t = √(1.45/4.9)

t = 0.54 s

Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).

Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:

Time (t) taken to reach the height = 0.54 s

Time of flight (T) =?

T = 2t

T = 2 × 0.54

T = 1.08 s

Therefore, it will take the kangaroo 1.08 s to return to the earth.

3 0
3 years ago
Add the following displacement vectors: <br> 12 m south and 15 m 55° E of N??
daser333 [38]
12m S=0m E, -12m N
15m 55d E of N = 15 sin 55, 15 cos 55 N
Sum= (15sin55)m E, (-12 + 15 cos 55)m N
4 0
3 years ago
This questions pls help
abruzzese [7]

Answer:

1. True

2. False

3. True

4. True

5. False

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the satellite Terra able to do?
    6·2 answers
  • Which of the follwoing is not an example of an abiotic factor?
    11·2 answers
  • A 1600-kg car travels at a speed of of 12.5 m/s. What is its kinetic energy?
    11·1 answer
  • The theory that the Earth's crust and part of the upper mantle are broken into sections that move on a fluid layer of the mantle
    14·1 answer
  • Which material is a conductor​
    7·1 answer
  • A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/s. A 1.0-kg stone is thrown f
    7·1 answer
  • To determine an epicentral distance scientists consider the arrival times of what wave types
    8·1 answer
  • In a chemical reaction, substances react in a specific ratio. Chemical reactions are used to make many products, including food.
    10·1 answer
  • Which of the following is the main difference between speed and velosity? A) speed is measured over time B) velocity has both sp
    10·1 answer
  • What are the advantages of using digital signals over analog signals?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!