1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
8

A tennis ball is dropped from a height of 10.0 m. It rebounds off the floor and comes up to a height of only 4.00 m on its first

rebound. (Ignore the small amount of time the ball is in contact with the floor.) (a) Determine the ball’s speed just before it hits the floor on the way down. (b) Determine the ball’s speed as it leaves the floor on its way up to its first rebound height. (c) How long is the ball in the air from the time it is dropped until the time it reaches its maximum height on the first rebound?

Physics
1 answer:
Dominik [7]3 years ago
6 0

Answer:

a) V=14.01 m/s

b) V=8.86 \, m/s

c)t = 2.33s

Explanation:

Our most valuable tool in solving this problem will be the conservation of mechanical energy:

E_m = E_k +E_p

That is, mechanical energy is equal to the sum of potential and kinetic energy, and  the value of this E_m mechanical energy will remain constant. (as long as there is no dissipation)

For a point particle, we have that kinetic energy is:

E_k = \frac{1}{2} m \, V^2

Where m is the mass, and V is the particle's velocity,

Potential energy on the other hand is:

E_p= m\, g\, h

where g is the acceleration due to gravity (g=9.81 \, m/s^2) and h is the height of the particle. How do we define the height? It's a bit of an arbitrary definition, but we just need to define a point for which h=0, a "floor". conveniently we pick the actual floor as our reference height, but it could be any point whatsoever.

Let's calculate  the mechanical energy just before the ball is dropped:

As we drop the ball, speed must be initially zero, and the height from which we drop it is 10 meters, therefore:

E_m = \frac{1}{2}m\,0^2+ mg\cdot 10 \,m\\E_m=mg\cdot10 \, m

That's it, the actual value of m is not important now, as we will see.

Now, what's the potential energy at the bottom? Let's see:

At the bottom, just before we hit the floor, the ball is no longer static, it has a velocity V that we want to calculate, on the other hand, it's height is zero! therefore we set h=0

E_m = \frac{1}{2}m\,V^2+ mg\cdot 0\\\\E_m = \frac{1}{2}m\,V^2

So, at the bottom, all the energy is kinetic, while at the top all the energy is potential, but these energies are the same! Because of conservation of mechanical energy. Thus we can set one equal to the other:

E_m = \frac{1}{2}m\,V^2 = mg\cdot 10m\\\\\\ \frac{1}{2}m\,V^2 = mg\cdot 10m\\\\V = \sqrt[]{2g\cdot 10m} \\

And so we have found the velocity of the ball as it hits the floor.

V = \sqrt[]{2g\cdot 10m}=14.01\, m/s

Now, after the ball has bounced, we can again do an energy analysis, and we will get the same result, namely:

V = \sqrt[]{2g\cdot h}

where h is the maximum height of the ball, and v is the maximum speed of the ball (which is always attained at the bottom). If we know that now the height the ball achieves is 4 meters, plugging that in:

V = \sqrt[]{2g\cdot 4m} =8.86 \, m/s

Now for C, we need to know for how long the ball will be in the air from the time we drop it from 10 meters, and how long it will take the ball to reach its new maximum height of 4 meters.

As the acceleration of gravity is a constant, that means that the velocity of the ball will change at a constant rate. When something changes at a constant rate, what is its average?  It's the average between initial and final velocity, look at diagram to understand. The area under the Velocity vs time curve is the displacement of the ball, and:

V_{avg}\cdot t=h\\t=h/V_{avg}

what's the average speed when the ball is descending?

V_{avg}=\frac{1}{2} (14.01\, m/s+0)=7 \, m/s

so the time it takes the ball to go down is:

t=h/V_{avg}=\frac{10m}{7m/s} =1.43s\\

Now, when it goes up, it's final and initial speeds are 0 and 8.86 meters per second, thus the average speed is:

V_{avg}=\frac{1}{2} (8.86\, m/s+0)=4.43 \, m/s

and the time it takes to go up is:t=h/V_{avg}=\frac{4m}{4.43m/s} =0.90s

When we add both times , we get:

t_{total}=t_{down}+t_{up}=1.43s+0.90s = 2.33s

You might be interested in
A 60 kg skier starts from rest at the top of a frictionless slope of height of 35 meters. The velocity at the bottom is v. If a
Solnce55 [7]

Answer:

Explanation:

Speed of skier without parachute

= √ 2gh

= √ 2 x 9.8 x 35

= 26.2 m / s

Speed of skier with parachute

net force downwards

mg - 200

= 60 x 9.8 -200

= 388 N

acceleration = 388 / 60

a = 6.47 m / s

v = √ 2ah

= √ 2 x 6.47 x 35

= 21.28 m / s

8 0
3 years ago
Read 2 more answers
The Amazon rainforest has millions of trees down in South America. Pantanal, the largest wetland, or swamp, on Earth sits direct
Vikentia [17]

Answer:The Pantanal is, when the season changes of the river flow, the pantanal shrinks after a few river channels The amazon rainforest has a lot of trees.The vapor rises and condenses it into clouds.Water leaves the forest and comes back, the amazon leaves itself.If the amazon water was not to go by itself everything would be different.

5 0
2 years ago
Read 2 more answers
Ella has a mass of 56 kg, and Tyrone has a mass of 68 kg. Ella is standing at the top of a skateboard ramp that is 1.5 meters ta
Ivahew [28]

Answer:Tyrone is 12 more kg more than Ella.

Explanation:

7 0
3 years ago
Read 2 more answers
What happens to an electromagnetic wave as it passes from space to matter?
alina1380 [7]

Answer:

When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.

4 0
3 years ago
Read 2 more answers
How solar panels are effective for sprayers?​
vichka [17]

Answer:

Solar pesticide sprayer can give less tariff or price in effective spraying. Solar energy is absorbed by the solar panel which contains photovoltaic cells. ... This converted energy utilizes to store the voltage in the DC battery and that battery further used for driving the spray pump.

Explanation:

here is your answer Hope you will enjoy and mark me as brainlist

thank you

6 0
3 years ago
Other questions:
  • It is winter in Puerto Rico. Compare the air temperatures beachgoers feel near the water
    8·1 answer
  • a 2 kilogram wooden block raised on an inclined plane making angle 30 degree frictional force will be equal to​
    7·1 answer
  • Some lakes, such as the Great Salt Lake, accumulate soluble minerals such as salt. In those lakes, people find it much easier to
    8·2 answers
  • Which property do gas particles at the same temperature share?
    8·2 answers
  • A particle (mass = 4.0 g, charge = 80 mC) moves in a region of space where the electric field is uniform and is given by Ex = -2
    11·1 answer
  • 2. A man in a hot air balloon drops his “five guy's hamburger” over the edge of the basket. The
    14·1 answer
  • How long will it take, in minutes, for a transformer to transfer 2.3 X 10^6 J of energy from a 120-V circuit to a 345-V circuit
    15·1 answer
  • A 10 g bullet moving horizontally with a speed of 2000 m/s strikes and passes through a 4.0 kg block moving with a speed of 4.2
    10·1 answer
  • What is the answer to these questions?
    8·1 answer
  • Explain why it takes much more effort to
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!