Answer:
a) q_1=q_2= 7.42*10^-7 C
b) q_2= 3.7102*10^-7 C , q_1 = 14.8*10^-7 C
Explanation:
Given:
F_e = 0.220 N
separation between spheres r = 0.15 m
Electrostatic constant k = 8.99*10^9
Find: charge on each sphere
part a
q_1 = q_2
Using coulomb's law:
F_e = k*q_1*q_2 / r^2
q_1^2 = F_e*r^2/k
q_1=q_2= sqrt (F_e*r^2/k)
Plug in the values and evaluate:
q_1=q_2= sqrt (0.22*0.15^2/8.99*10^9)
q_1=q_2= 7.42*10^-7 C
part b
q_1 = 4*q_2
Using coulomb's law:
F_e = k*q_1*q_2 / r^2
q_2^2 = F_e*r^2/4*k
q_2= sqrt (F_e*r^2/4*k)
Plug in the values and evaluate:
q_2= sqrt (0.22*0.15^2/4*8.99*10^9)
q_2= 3.7102*10^-7 C
q_1 = 14.8*10^-7 C
That is false. A GPS cant tell latitude and longitude
Answer:
Due to energy loss while collision ball will not reach to same height while if there is no energy loss then in that case ball will reach to same height
Explanation:
As we know that initially ball is held at height h = 40 cm
So here we can say that kinetic energy of the ball is zero and potential energy is given as

now when strike with the ground then its its fraction of kinetic energy is lost in form of other energies
So the ball will left rebound with smaller energy and hence it will reach to height less than the initial height
While if we assume that there is no energy loss during collision then in that case ball will reach to same height again
Answer:
The frictional force
6.446 N
The acceleration of the block a = 6.04 
Explanation:
Mass of the block = 3.9 kg
°
= 0.22
(a). The frictional force is given by


3.9 × 9.81 × 
29.3 N
Therefore the frictional force
0.22 × 29.3
6.446 N
(b). Block acceleration is given by

F = 30 N
= 6.446 N
= 30 - 6.446
= 23.554 N
The net force acting on the block is given by

23.554 = 3.9 × a
a = 6.04 
This is the acceleration of the block.
The answer is strong push. When you ride a bike, the pedals convert a vertical push from your legs into rotational motion for the wheels to turn.