So the problem are asking to find the value of G base on the formula of the said equation of the magnitude of gravitational attraction on either body. Base on that, the possible answer or the derived formula of the said function is G = Fr^2/m1m2. I hope you are satisfied with my answer and feel free to ask for more
<span>The velocity will be 41.25 m/s2 after 9 seconds. To find velocity after a specific time period, multiply the acceleration (2.75) times the number of seconds (9) to receive 24.75 m/s, then add that to the initial velocity of 16.5 m/s. 24.75 + 16.5 = 41.25 m/s2.</span>
Answer:
Time = 0.55 s
Height = 8.3 m
Explanation:
The ball is dropped and therefore has an initial velocity of 0. Its acceleration, g, is directed downward in the same direction as its displacement,
.
The dart is thrown up in which case acceleration, g, acts downward in an opposite direction to its displacement,
. Both collide after travelling for a time period, t. Let the height of the dart from the ground at collision be
and the distance travelled by the ball measured from the top be
.
It follows that
.
Applying the equation of motion to each body (h = v_0t + 0.5at^2),
Ball:
(since
.)

Dart:
(the acceleration is opposite to the displacement, hence the negative sign)

But




The height of the collision is the height of the dart above the ground,
.




Answer:
Alice Distance = 100 meters
Peter's Distance = 3 km
Alice Displacement and Peter's displacement are both 100 meters upwards.
Explanation:
To solve this question, we have to first define distance and displacement.
Distance is simply the measurement of the sum of all paths travelled from one point to another while displacement is measurement of the shortest distance from initial point to final point.
Now, Alice and Peter are moving from the same point.
Alice distance travelled is 100 meters.
Also, her displacement will be 100 meters because it is the shortest distance to the summit of the cliff.
Now, for Peter, he decides to take a longer route which is 3 km in distance.
However, the shortest path which is the displacement is still 100 meters.
Thus, Peter's displacement is 100 meters.
Answer:
Rf5 is 6 and I have an article on common strategies for coping
Explanation:
Abdullah and this is my 55 566 and I have an article on common strategies for coping with the value of polynomial 5x and the video will will certainly not cause any harm to you and the thank god that you can please make a gaming video or 6 with gggtgr and the video will will certainly be the same as the one you sent me last night and I will send you a link to the chief 6 on the