Given information : H = -92 KJ/mol and S = -0.199 KJ/(mol.K)
At equilibrium G = 0
We have to find the Temperature at which reaction would be spontaneous.
For spontaneous reaction : 
For non-spontaneous reaction : 
We can find the temperature using the formula for Gibbs free energy which is:

Where, G = Gibbs free energy ,
H = Enthalpy
S = Entropy
T = Temperature
By plugging the value of G , H and S in the above formula we can find 'T'

Since reaction should be spontaneous that means
should be negative , so the above formula can be written as :

On rearranging the above formula we get :




For the reaction to be spontaneous , T should be less than 462.3 K, so out of given option , C is correct which is 400 K.
Answer:
it will eventually die off or eventually repopulate
Explanation:
Answer:
its A screw :))) your welcome
<span>Metals tend to lose electrons and form electro-positive ions / cations.</span>
Answer:

Explanation:
Hello,
In this case, the first step is to compute the number of moles of potassium phosphate in 20.0 mL (0.020L) of the 0.015-M (mol/L) solution as shown below:

Thus, these moles correspond to potassium phosphate moles, which molecular formula is K₃PO₄, therefore, one mole of this compound contains three moles of potassium ions as it has three as its subscript in the formula. Thereby, the moles of potassium ions result in:

Best regards.