Answer:

Explanation:
The given reactions are:
PbCl2(aq)⇌Pb2+(aq)+2Cl−(aq) 
AgCl(aq)⇌Ag+(aq)+Cl−(aq) 
Required reaction is:
PbCl2(aq)+2Ag+(aq)⇌2AgCl(aq)+Pb2+(aq)

In chemistry, the molar mass M is a physical property defined as the mass of a given substance (chemical element or chemical compound) divided by its amount of substance. The base SI unit for molar mass is kg/mol. However, for historical reasons, molar masses are almost always expressed in g/mol.
Hope this helped!
Good luck :p
~Emmy <3
Answer:
979 atm
Explanation:
To calculate the osmotic pressure, you need to use the following equation:
π = <em>i </em>MRT
In this equation,
-----> π = osmotic pressure (atm)
-----><em> i</em> = van't Hoff's factor (number of dissolved ions)
-----> M = Molarity (M)
-----> R = Ideal Gas constant (0.08206 L*atm/mol*K)
-----> T = temperature (K)
When LiCl dissolves, it dissociates into two ions (Li⁺ and Cl⁻). Therefore, van't Hoff's factor is 2. Before plugging the given values into the equation, you need to convert Celsius to Kelvin.
<em>i </em>= 2 R = 0.08206 L*atm/mol*K
M = 20 M T = 25°C + 273.15 = 298.15 K
π = <em>i </em>MRT
π = (2)(20 M)(0.08206 L*atm/mol*K)(298.15 K)
π = 979 atm
The statements that describe a nuclear reaction are may involve a change in total mass, involve very high-energy changes, and involve changes in nuclides when decay takes place.
There are two kinds of nuclear reactions, that is, fission and fusion. Fusion involves the fusion of two light atoms into a heavier atom, while fission involves the splitting of an unstable isotope (with a high mass number) into stable elements of lower mass number, which vary in features from the parent atoms. Both the reactions discharge huge concentration of energies in the process.