Explanation:
2 Because visual specialization skills are important to success in so many career
fields, it is helpful to continue to build skill. What is one strategy you can use to
continue to improve your visualization skills?
Please someone help!!!
Answer: The final temperature of the gas is 7.58 °C.
Explanation: We are given initial and final pressure of the system and we need to find the final temperature of the system.
To calculate it, we use the equation given by Gay-Lussac.
His law states that pressure is directly related to the temperature of the gas.

Or,

where,
= initial pressure = 893 mmHg = 1.175atm (Conversion factor: 1atm = 760mmHg)
= initial temperature = 49.3°C = [49.3 + 273.15]K = 322.45K
= Final pressure = 778mmHg = 1.023atm
= Final temperature = ?°C
Putting values in above equation, we get:

Converting Final temperature from kelvin to degree Celsius.
![T_2=280.73K=[280.73-273.15]^oC=7.58^oC](https://tex.z-dn.net/?f=T_2%3D280.73K%3D%5B280.73-273.15%5D%5EoC%3D7.58%5EoC)
Hence, the final temperature of the gas is 7.58 °C.
Answer:
Jeweler B = more accurate
Jeweler A = more precise
Error:
0.008, 0
% error :
0.934% ; 0
Explanation:
Given that:
True mass of nugget = 0.856
Jeweler A: 0.863 g, 0.869 g, 0.859 g
Jeweler B: 0.875 g, 0.834 g, 0.858 g
Official measurement (A) = 0.863 + 0.869 + 0.859 = 2.591 / 3 = 0.864
Official measurement (B) = 0.875 + 0.834 + 0.858 = 2.567 / 3 = 0.8556
Accuracy = closeness of a measurement to the true value
Accuracy = true value - official measurement
Jeweler A's accuracy :
0.856 - 0.864 = - 0.008
Jeweler B's accuracy :
0.856 - 0.856 = 0.00
Therefore, Jeweler B's official measurement is more accurate as it is more close to the true value of the gold nugget.
However, Jeweler A's official measurement is more precise as each Jeweler A's measurement are closer to one another than Jeweler B's measurement which are more spread out.
Error:
Jeweler A's error :
0.864 - 0.856 = 0.008
% error =( error / true value) × 100
% error = (0.008/0.856) × 100% = 0.934%
Jeweler B's error :
0.856 - 0.856 = 0 ( since the official measurement as been rounded to match the decimal representation of the true value)
% error = 0%
I would say the answer is D
Paint samples received by forensic laboratories are usually in the form of small chips or smears. Infrared (IR) spectroscopy is one of the most commonly used tools available for the analysis of these types of samples and serves as a staple comparative technique in the assessment of whether or not a questioned sample could have come from a suspected object
The most direct way to probe the vibrational frequencies of a molecule is through infrared spectroscopy. This is because vibrational transitions typically require an amount of energy that corresponds to the infrared region of the spectrum. Raman spectroscopy, which typically uses visible light, can also be used to directly measure vibration frequencies.
Great Question!
The Answer Would Be "B" The "RESPONDING" Variable