The horizontal force : f = k*N
k- coefficient of friction
k = f /N
N = m * g = 45 kg * 9.81 m/s² = 441.45 N
k = 25 N : 441.45 N = 0.057
Answer C) 0.057
Answer:
2.6×10⁻³ N
Explanation:
From coulomb's law,
F = kq'q/r²................ Equation 1
Where F = Repulsive force, q' = charge on the first sugar grain, q = charge on the second sugar grain, r = distance of separation between the sugar grain, k = proportionality constant.
From the question,
since q' = q
Then,
F = kq²/r²..................... Equation 2
Given: q = 1.79×10⁻¹¹ C, r = 3.45×10⁻⁵ m,
Constant: k = 9×10⁹ Nm²/kg².
Substitute into equation 2
F = 9×10⁹(1.79×10⁻¹¹)²/(3.45×10⁻⁵ )²
F = 9×10⁹(3.2041×10⁻²²)/(11.9025×10⁻¹⁰)
F = (28.8369×10⁻¹³)/(11.9025×10⁻¹⁰)
F = 2.6×10⁻³ N.
With the switch open, there's no current in the circuit, and therefore
no voltage drop across any of the dissipative elements (the resistor
or the battery's internal impedance). So the entire battery voltage
appears across the switch, and the voltmeter reads 12.0V .