Answer:
7.99 or 8 depends where you round.
Explanation:
Distance divided by time so 1246/156=7.98717948718
Answer:
D.
Explanation:
Given that your boat departs from the bank of a river that has a swift current parallel to its banks. If you want to cross this river in the shortest amount of time, you should direct your boat: so that it drifts with the current.
If the boat moves perpendicular to the current, the current flow will be the resistance to the movement of the boat. So, it's better for the boat to drifts perpendicularly with the current.
The best answer is therefore option D.
and C. corrosive, increases the concentration of hydrogen ions when added to water, forms hydrogen gas when it comes in contact with a metal, and formssalt and water when added to a base.
-- If 2,000 newtons of force were applied through a distance of 1,000 meters,
then 2,000,000 newton-meters = 2,000,000 joules of work were done.
-- 45 minutes = (45 x 60) = 2,700 seconds
-- Power = (work) / (time) = (2,000,000 j) / (2,700 s) = <u>740.74 watts</u>
Interestingly, that's almost exactly 1 horsepower. (0.99295... of 746 watts)
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse: