Question 1: C Question 2: B, Hope this Helps!
Answer:
A star with 15 solar masses is too big to be a main-sequence star.
Answer:
q = -2 m and q = -0.5 m
Explanation:
For this exercise we must use the equation of the optical constructor
1 / f = 1 / p + 1 / q
where f is the focal length, p and q are the distance to the object and the image, respectively
Let's start with the far vision point, in this case the power of the lens is
P = -0.5D
power is defined as the inverse of the focal length in meter
f = 1 / D
f = -1 / 0.5
f = - 2m
the object for the far vision point is at infinity p = infinity
1 / f = 1 / p + i / q
1 / q = 1 / f - 1 / p
1 / q = -1/2 - 1 / ∞
q = -2 m
The sign indicates that the image is on the same side as the object
Now let's lock the near view point
D = +2.00 D
f = 1 / D
f = 0.5m
the near mink point is p = 25 cm = 0.25 m
1 / f = 1 / p + 1 / q
1 / q = 1 / f - 1 / p
1 / q = 1 / 0.5 - 1 / 0.25
1 / q = -2
q = -0.5 m
the sign indicates that the image is on the same side as the object in front of the lens
Answer:
Okay!! What's the question?
Explanation:
Maybe I can help!
The force of gravity = GMm / r^2, where G is gravitational constant, M is mass of one object, m is mass of another object, r is distance between them.
To make gravity smaller, decrease mass or increase distance.
To make gravity bigger, increase mass or decrease distance.