Please provide the choices to select the possible choices.
Answer:
(A) 667.5 N/m
(B)
Explanation:
(A) Let the spring constant be k.
Using the formula F = kx
k = 251 / 0.376
K = 667.5 N/m
(B)
Work done
W = 0.5 × kx^2
W = 0.5 × 667.5 × 0.376 × 0.376
W = 47.2 J
Answer:
The magnitude of the angular acceleration ∝ =
}[/tex]
Explanation:
The angular acceleration ∝ is equal to the torque (radius multiplied by force) divided by the mass times the square of the radius. The magnitude of angular acceleration ∝ will have the equation above but we have to replace the mass in the equation by 2.8kg as stated.
Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball, 
After the collision, final momentum 
Using the conservation of momentum as :


v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.
Velocity. Net force causes acceleration and acceleration causes a change in direction and/or magnitude of velocity