The final velocity of the ball that is dropped from a height of 200m is v = 44.73 m/s .
<h3>What is velocity with example?</h3>
The rate at which an object is travelling in one direction is referred to as its velocity. an automobile traveling north on a highway, or a rocket taking off. Its velocity vector's absolute value always is equal to the motion's speed because it is a scalar.
<h3>Briefing:</h3>
Given the initial velocity of the ball (u) = 0
Distance travelled by the ball (s) = 200m
Acceleration (a) = 10 m/s²
As we know:
v² = u² + 2as
Putting values:
v² = 0+2 × (10 m/s²) × (200 m)
v = 44.73 m/s.
To know more about Velocity visit:
brainly.com/question/18084516
#SPJ9
Answer: Liquid 2, if it's 3 g/mL and liquid 2 has 6gs and 2 mLs than it's 3g/mL
Refer to the diagram shown below.
From the geometry, obtain
x = 2.5 - 0.55 = 1.95 m
cos θ = 1.95/2.5 = 0.78
θ = cos⁻¹ 0.78 = 38.74°
From the free body diagram, the tension in the chain is 450 N.
F is the centripetal force,
W is Dee's weight.
The components of the tension are
Horizontal component = 450 sin(38.74°) = 281.6 N, acting left.
Vertical component = 450 cos(38.74°) = 351.0 N, acting upward.
Answers:
Horizontal: 281.6, acting left.
Vertical: 351.0 N, acting upward.
PE = (250) (30) (9.81) = 73575J
I used to use 9.81 as acceleration due to gravity. The answer might be different from what you expect
An upwards acceleration of the elevator would cause this greater reading since the scale displays the Normal Force of the object on it. The inertia of the person would prefer to stay stationary, so the scale must push up on the person to accelerate him upward along with the elevator. This results in the following equation:
W = mg + ma
Where mg represents the weight reading without external acceleration and ma as the weight reading due to the external acceleration.