Answer:- B:
is the right answer.
Solution:- The balanced equation is:

We have been given with 8.75 grams of oxygen and asked to calculate the grams of hydrogen needed to react with given grams of oxygen according to the balanced equation.
From balanced equation, 1 mole of oxygen reacts with 2 moles of hydrogen.
So, let's convert grams of oxygen to moles and multiply it by the mole ratio to calculate the moles of hydrogen that are easily converted to grams on multiplying by it's molar mass.
The complete set up looks as:

= 
Hence, the right option is B:
.
Answer: Using more fossil fuels
Explanation: Burning fossil fuels releases Green House gasses into the atmosphere, such as carbon dioxide. The carbon dioxide in the atmosphere traps in heat, which causes global temperatures to increase.
<span>Exothermic reaction evolves energy due to which products get hot...</span>
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
The reaction of an Arrhenius acid with an Arrhenius base produces water and <span>A) a salt</span>