Acid rain falls in areas that have air pollution. (<span>Acid rain is caused by emissions of </span>sulfur dioxide<span> and </span>nitrogen oxide)
Answer:
I would think C because you dont want to sell it (A), you dont want to conduct it or launch it agai, (B or D), so you would redesign it to make it better.
Answer:
Ag+(aq) + Cl-(aq) —> AgCl(s)
Explanation:
2AgNO3(aq) + CaCl2(aq) —>2AgCl(s) + Ca(NO3)2(aq)
The balanced net ionic equation for the reaction above can be obtained as follow:
AgNO3(aq) and CaCl2(aq) will dissociate in solution as follow:
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
CaCl2(aq) —> Ca2+(aq) + 2Cl-(aq)
AgNO3(aq) + CaCl2(aq) –>
2Ag+(aq) + 2NO3-(aq) + Ca2+(aq) + 2Cl-(aq) —> 2AgCl(s) + Ca2+(aq) + 2NO3-(aq)
Cancel out the spectator ions i.e Ca2+(aq) and 2NO3- to obtain the net ionic equation.
2Ag+(aq) + 2Cl-(aq) —> 2AgCl(s)
Divide through by 2
Ag+(aq) + Cl-(aq) —> AgCl(s)
The, the net ionic equation is
Ag+(aq) + Cl-(aq) —> AgCl(s)
Answer:

The reactant that is reduced is 
Explanation:
The complete equation is as below:

<em>Recall that oxidation involves the gain of electrons while reduction involves the loss of electrons.</em>
In the above reaction,
loses electrons to coenzyme Q and becomes reduced to FAD, hence the oxidizing agent. Coenzyme Q gains electrons and becomes oxidized to
, hence the reducing agent.
<u>In order words, </u>
<u> is reduced while coenzyme Q is oxidized.</u>
Answer:
299.14 K or 26°C
Explanation:
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas.
The ideal gas law is often written as
PV = nRT
where P ,V and T are the pressure, volume and absolute temperature;
n is the number of moles of gas and R is the ideal gas constant.
n=1.10 x 10^5 mol
V= 2.70 x 10^6 L
P= 1.00 atm= 101.325 kPa
R= 8.314 kPa*L/ mol*K
when the formula is rearranged, T=PV/ nR
T = (101.325kPa * 2.70 x 10^6 L)/ (1.10 x 10^5 mol * 8.314 kPa*L/ mol*K)
T = 299.1421917 K
or
T = 299.14 - 273.15 = 25.99 = 26°C