Answer:
Avogadro's number or Avogadro's constant.
1) Convert 12.9 liters of Oxygen to mol at the given conditions:
PV = nRT ⇒ n = PV/RT
n = [1.2atm*12.9 l] / [0.082 atm l /K mol * 297K]
n = 0.636 mol of O2
2) use the stoichiometry derived from the balanced chemical equation
1mol C2H4 / 3 mol O2 = x mol C2H4 / 0.636 mol O2
x = 0.636 / 3 mol O2 = 0.212 mol O2.
Answer: 0.212 mol O2
Answer: D
Explanation:
Light waves travel in straight paths called rays. Unlike sound, where waves have to travel through matter to be heard, light waves do not have to travel through matter to be seen. Instead, rays travel in a straight path until they hit an object. A ray's straight path is the path of light
Answer:
1520mmHg
Explanation:
Data obtained from the question include:
V1 (initial volume) = 600 mL
P1 (initial pressure) = 760 mmHg
V2 (final volume) = 300 mL
P2 (final pressure) =.?
Using the Boyle's law equation P1V1 = P2V2, the final pressure of the gas can easily be obtained as shown below:
P1V1 = P2V2
760 x 600 = P2 x 300
Divide both side by 300
P2 = (760 x 600) /300
P2 = 1520mmHg
The final pressure of the gas is 1520mmHg
Answer:
1. Mg (s) + 2Na+(aq) → 2Na(s) + Mg²⁺(aq)
2. 2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)
Explanation:
The net ionic equation of a reaction express only the chemical species that are involved in the reaction:
1. Mg (s) + Na2CrO4 (aq) → 2Na + MgCrO4(aq)
The ionic equation:
Mg (s) + 2Na+(aq) + CrO4²⁻ (aq) → 2Na + Mg²⁺ + CrO4²⁻(aq)
Subtracting the ions that don't change:
<h3>Mg (s) + 2Na+(aq) → 2Na + Mg²⁺</h3>
2. 2K(s) + Cd(NO3)2(aq) → 2KNO3(aq) + Cd(s)
The ionic equation:
2K(s) + Cd²⁺(aq) + 2NO3⁻(aq) → 2K⁺(aq) + 2NO3⁻(aq) + Cd(s)
Subtracting the ions that don't change:
<h3>2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)</h3>