Answer:
C
Explanation:
The airplanes speed would decrease
For an object to sink in something, it's density has to be higher than the object it is in, so if it sinks in water the number has be higher than 1
And to float, and objects density has to be lower than that of the substance it is put in, so it has to be lower than 1.26
So between 1 and 1.26
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
Answer:
Carbon
Explanation:
Carbon has four electrons in its valence shell, so it generally shares it in a covalent bond. This element needs four electrons to be stable, so it can form single (such as the bond with hydrogen), double (such as the bond with oxygen) or triple bonds (such as the bond with nitrogen).
It can also form bonds with other carbon, and they can form longs chains, that's why there are a lot of organic compounds (the compounds with carbon). Carbon can form rings too, such as in benzene.