The first one is 4. i cannot see the full operation of the rest.
The compound that has higher mass percent is Mg3N2 which is 72%
explanation
calculate the % mass of Mg in each compound
% composition of mg= molar mass of Mg/ total molar mass of the compound x100
in MgO = 24 /40 x100 = 60%
in Mg3N2 =72/100 x100 = 72 %
therefore the % composition in Mg3N2 is higher
The part that says all atoms of a specific element always have the same mass. Isotopes of an atom have varying masses compared to the standard version of the element.
<h3>
Answer:</h3>
- Balanced Equation; 2Fe + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂
- Why balance?: To obey the law of conservation of mass
- Subscripts can not be changed, since they show the actual number of atoms of each element in a compound.
<h3>
Explanation:</h3>
- The balanced equation for the reaction between the iron metal and sulfuric acid to produces iron (III) sulfate and hydrogen gas is given by;
2Fe + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂
- Balancing chemical equations ensures that they obey the law of conservation of mass which requires the mass of reactants and the mass of products to be equal.
- Balancing is done by putting coefficients on reactants and products while not affecting the subscripts as subscripts show the actual number of atoms of an element in a compound.
Answer:
6 carbon dioxide molecules
Explanation:
The Calvin cycle generates the necessary reactions for the fixation of carbon in a solid structure for the formation of glucose and, in turn, regenerates the molecules for the continuation of the cycle.
The Calvin cycle is also known as the dark phase of photosynthesis or also called the carbon fixation phase. It is known as the dark phase because it is not light dependent as is the first phase or light phase
.
This second stage of photosynthesis fixes the carbon of the absorbed carbon dioxide and generates the precise number of biochemical elements and processes necessary to produce sugar and recycle the remaining material for continuous production.
The Calvin cycle uses the energy produced in the light phase of photosynthesis to fix the carbon dioxide (CO2) carbon in a solid structure such as glucose, in order to generate energy.
The glucose molecule composed of a six-carbon main structure will be further processed in glycolysis for the preparatory phase of the Krebs cycle, both part of the cellular respiration.
The Calvin cycle produces in six turns a six-carbon glucose molecule and regenerates three RuBP that will be catalyzed again by the RuBisCo enzyme with CO2 molecules for the restart of the Calvin cycle.
The Calvin cycle requires six molecules of CO2, 18 ATP and 12 NADPH produced in the light phase of photosynthesis to produce a glucose molecule and regenerate three RuBP molecules.