Answer:
θ = 29.38°
Explanation:
The centripetal force is given by the formula;
F_c = F_n(sin θ) = mv²/r
Now, the vertical component of the normal force is; F_n(cos θ)
Now, this vertical component is also expressed as; F_n(cos θ) = mg
Thus, the slope is;
F_n(sin θ)/F_n(cos θ) = (mv²/r)/mg
tan θ = v²/rg
v² = rg(tan θ)
The initial speed will be gotten from the relation;
(v_o)² = μ_s(gr)
Plugging rg(tan θ) for (v_o)², we have;
μ_s(gr) = rg(tan θ)
rg will cancel out to give;
μ_s = (tan θ)
Thus, θ = tan^(-1) μ_s
μ_s is coefficient of static friction given as 0.563
θ = tan^(-1) 0.563
θ = 29.38°
Answer:
Explanation:
a)
Ff = μmgcosθ
Ff = 0.28(1600)(9.8)cos(-84)
Ff = 458.9217...
Ff = 460 N
b) ignoring the curves required at top and bottom which change the friction force significantly, especially at the bottom where centripetal acceleration will greatly increase normal forces and thus friction force.
W = Ffd
W = 458.9217(-49.4/sin(-84)
W = 22,795.6119...
W = 23 kJ
c) same assumptions as part b
The change in potential energy minus the work of friction will be kinetic energy.
KE = PE - W
½mv² = mgh - (μmgcosθ)d
v² = 2(gh - (μgcosθ)(h/sinθ))
v = √(2gh(1 - μcotθ))
v = √(2(9.8)(49.4)(1 - 0.28cot84))
v = 30.6552...
v = 31 m/s
Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2
The law of conservation of energy is a law of science that states that energy cannot be created or destroyed, but only changed from one form into another or transferred from one object to another.<span>
</span>