1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hammer [34]
3 years ago
5

A scuba diver at 70 m below the surface of a lake, where the temperature is 4 degrees C, releases an air bubble with a volume of

14 cm^3. The bubble rises to the surface, where the temperature is 23 degrees C. What is the volume of the bubble (in cubic centimeters) just before it reaches the surface? (The density of water is 1000 kg/m^3 and air pressure is 1E+05 N/m^2.)
Physics
1 answer:
posledela3 years ago
6 0

Answer:

121.3 cm^3

Explanation:

P1 = Po + 70 m water pressure (at a depth)

P2 = Po (at the surface)

T1 = 4°C = 273 + 4 = 277 K

V1 = 14 cm^3

T2 = 23 °C = 273 + 23 = 300 K

Let the volume of bubble at the surface of the lake is V2.

Density of water, d = 1000 kg/m^3

Po = atmospheric pressure = 10^5 N/m^2

P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2

Use the ideal gas equation

\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}

By substituting the values, we get

\frac{8\times 10^5\times 14}{277}=\frac{10^{5} \timesV_{2}}{300}

V2 = 121.3 cm^3

Thus, the volume of bubble at the surface of lake is 121.3 cm^3.

You might be interested in
20 POINTS
bekas [8.4K]
They can pretty much be by water i think
5 0
3 years ago
What is the kinetic energy of a 1.40 kg discus with a speed of 22.5 m/s?
Oksana_A [137]
Kinetic energy = (1/2) (mass) (speed)²

                         = (1/2) (1.4 kg) (22.5 m/s)²

                         =    (0.7 kg)  (506.25 m²/s² )

                         =          354.375  kg-m²/s²  =  354.375 joules .

This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s.  In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin. 
8 0
3 years ago
Help pls, see picture. Will mark Brainliest
Leno4ka [110]

Answer:

B

Explanation:

the graph shows the line going up (accelerating) and it isn't curving like d so it doesn't stop accelerating

Hope this helps :)

4 0
3 years ago
The distance between two planets is 1600 km. How much time would the light
Snowcat [4.5K]

Answer:

5.33*10^-3 seconds

Explanation:

c = d/t

c = speed of light constant (3.0*10^5 km/s)

d = distance (1600 km)

t = ?

3.0*10^5 = 1600/t

t = 1600/3.0*10^5

t = 5.33*10^-3 seconds

I hope this helped! :)

6 0
3 years ago
In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball m
ikadub [295]

(a) -39.4^{\circ}

Let's take the initial direction (before the collision) of the cue ball has positive x-direction.

Along the y-direction, the total initial momentum is zero:

p_y =0

Therefore, since the total momentum must be conserved, it must be zero also after the collision. So we write:

0 = m v_1 sin \phi_1 + m v_2 sin \phi_2 \\0 = m(4.60) sin (28^{\circ}) + m(3.40) sin \phi_2

where

m is the mass of each ball

v_1= 4.60 m/s is the velocity of the cue ball after the collision

v_2 = 3.40 m/s is the velocity of the second ball after the collision

\phi_1=28.0^{\circ} is the angle of the cue ball with the x-axis

\phi_2 is the angle of the second ball

Solving for \phi_2, we find the angle between the direction of motion of the second ball and the original direction of motion:

sin \phi_2 = -\frac{4.60 sin 28}{3.40}=-0.635\\\phi_2 = -39.4^{\circ}

(b) 6.69 m/s

To find the original speed of the cue ball, we analyze the situation along the horizontal direction.

First, we calculate the total momentum along the x-direction after the collision, which is:

p_x = m v_1 cos \phi_1 + m v_2 cos \phi_2 \\0 = m(4.60) cos (28^{\circ}) + m(3.40) cos (-39.4^{\circ})=6.69 m

The initial total momentum along the x-direction as

p_x = m u

where

m is the mass of the cue ball

u is the initial velocity of the cue ball

The momentum along this direction must be conserved, so we can equate the two expressions and find the value of u:

mu = 6.69 m\\u = 6.69 m/s

7 0
3 years ago
Other questions:
  • A ray passing through optical centre don't deviate ? why​
    13·1 answer
  • Negative charges repel positive charges.<br> a. true or<br> b. false
    9·1 answer
  • Which sphere of Earth is associated with plate tectonics?
    14·2 answers
  • Which statements accurately describe mass? Check all that apply. Mass is a chemical property of an object. Mass is measured usin
    9·2 answers
  • During a car collision, the knee, thighbone, and hip can sustain a force no greater than 4000 N. Forces that exceed this amount
    7·1 answer
  • When the termination is a terminal block, care must be taken to ensure a good electrical connection without damaging the conduct
    14·1 answer
  • A Scientist was studying cockroach movement through a small passage. The scientist attached sandpaper to the inside surfaces of
    10·1 answer
  • A uniform electric field of strength E points to the right. An electron is fired with a velocity v0 to the right and travels a d
    15·1 answer
  • When is the kinetic energy of the ball zero and when is it at its highest? When is its potential energy at its lowest and at its
    14·1 answer
  • A hanging wire made of an alloy of titanium with diameter 0.05 cm is initially 2.7 m long. When a 15 kg mass is hung from it, th
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!