The 102N acting on the ropes being pulled by eric and kim have some of that force acting horizontally, and some of it vertically. By visualizing it as a right angled triangle, with the hypotenuse the length of the diagonal force, and each side the length of the horizontal and vertical forces, you can use trigonometry to calculate the length of the vertical force. You are told that it is at an angle of 30 with the vertical rope, therefore you know the length of the hypotenuse, and the angle between it and the vertical force, so using trig: (vertical force=x)
x/102=cos(30)
x=102*cos(30)
x=88.33
Therefore the diagonal ropes give a vertical force of 88.33N, and the centre rope, as it acts vertically, gives a vertical force of all 102N. The total:
88.33*2+102=278.66N
I don't know if this is very clear, I hope its good enough to help. If you don't understand, just ask, and I can answer any questions!!! :)
Answer:
Note: Angular momentum is always conserved in a collision.
The initial angular momentum of the system is
L = ( It ) ( ωi )
where It = moment of inertia of the rotating circular disc,
ωi = angular velocity of the rotating circular disc
The final angular momentum is
L = ( It + Ir ) ( ωf )
where ωf is the final angular velocity of the system.
Since the two angular momenta are equal, we see that
( It ) ( ωi ) = ( It + Ir ) ( ωf )
so making ωf the subject of the formula
ωf = [ ( It ) / ( It + Ir ) ] ωi
Explanation:
Answer:
0.29713 m/s
Explanation:
m = Mass of person
g = Acceleration due to gravity = 9.81 m/s²
v = Velocity
r = Radius = 18 mm
By balancing the forces in the system we have

The velocity of the coaster is 0.29713 m/s
Answer:

direction is Horizontal
Explanation:
As we know that the string is horizontal here
so the tension force in the string is due to electrostatic force on it
now we will have

so here the force is tension force on it


now we have


direction is Horizontal