Answer:

Explanation:
M = Mass of planets
R = Radius of circle
v = Velocity
= Angle
The circle is inside the triangle

The centripetal acceleration

The speed of the stars is 
The tension in the cables as the elevator travel upwards is 1,960 N.
The given parameters:
- Mass of the elevator, m = 200 kg
<h3>Newton's second law of motion;</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of the object.
The tension in the cables as the elevator travel upwards is calculated by applying Newton's second law of motion as shown below;
T = ma + mg
where;
- a is the acceleration of the elevator
- g is the acceleration due to gravity
At constant velocity, acceleration is zero (a = 0)
T = m(0) + mg
T = mg
T = 200 x 9.8
T= 1,960 N
Thus, the tension in the cables as the elevator travel upwards is 1,960 N.
Learn more about Newton's second law here: brainly.com/question/3999427
Answer: It's D
Explanation: just took the test
I believe the answer would be Kinetic Energy. Kinetic energy is defined as energy which a body possesses by virtue of being in motion. We weren’t given answer choices so I don’t have much to work with lol.
Answer is
9.773m/s^2
-----------------------------------------------------------------------------
Given,
h=8848m
The value of sea level is 9.08m/s^2. So, Let g′ be the acceleration due to the gravity on Mount Everest.
g′=g(1 − 2h/h)
=9.8(1 - 6400000/17696)
=9.8(1 − 0.00276)
9.8×0.99724
=9.773m/s^2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s^2
-----------------------------------------------------------------------
hope this helps :)