Answer:
sun is the main source while the other object reflect light on the sun
Explanation:
nasa libro yans
Answer:
by lying down on a nice and soft quilted matress
Answer:
Explanation:
Given that,
Two resistor has resistance in the ratio 2:3
Then,
R1 : R2 = 2:3
R1 / R2 =⅔
3 •R1 = 2• R2
Let R2 = R
Then,
R1 = ⅔R2 = 2/3 R
So, if the resistor are connected in series
Let know the current that will flow in the circuit
Series connection will have a equivalent resistance of
Req = R1 + R2
Req = R + ⅔ R = 5/3 R
Req = 5R / 3
Let a voltage V be connect across then, the current that flows can be calculated using ohms law
V = iR
I = V/Req
I = V / (5R /3)
I = 3V / 5R
This the current that flows in the two resistors since the same current flows in series connection
Now, using ohms law again to calculated voltage in each resistor
V= iR
For R1 = ⅔R
V1 =i•R1
V1 = 3V / 5R × 2R / 3
V1 = 3V × 2R / 5R × 3
V1 = 2V / 5
For R2 = R
V2 = i•R2
V2 = 3V / 5R × R
V2 = 3V × R / 5R
V2 = 3V / 5
Then,
Ratio of voltage 1 to voltage 2
V1 : V2 = V1 / V2 = 2V / 5 ÷ 3V / 5
V1 : V2 = 2V / 5 × 5 / 3V.
V1 : V2 =2 / 3
V1:V2 = 2:3
The ratio of their voltages is also 2:3
For the first one, the correct answer would be "<span>Substance changes its form but not its molecular composition.". During a physical change (let's say cutting paper), the substance has its shape changed, but it is still itself (paper).
</span><span>The second one is a bit trickier: </span>
Kinetic energy of a molecule is directly influenced by temperature. If there is a higher temperature it will have a higher kinetic energy which means the molecule moves at a higher velocity. This will increase the chance of particles bouncing off of each other during the chemical reaction. That explains why the rate of reaction will be higher at a higher temperature, rather than higher at a cool temperature. The correct answer would be lower at 39F.
The net force on the bike and the rider is 120 N
Explanation:
We can solve this problem by applying Newton's second law of motion, which states that:
F = ma
where
F is the net force exerted on an object
m is the mass of the object
a is its acceleration
For the bike and the rider in this problem, we have
m = 60 kg is their combined mass
is their acceleration
Therefore, the net force on them is

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly