1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laiz [17]
3 years ago
6

A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the fo

llowing statements are true when the system undergoes small oscillations? Check all that apply. a. The period is independent of the length of the wire. b. The period is inversely proportional to the length of the wire. c. The period is independent of the suspended mass. d. The period is proportional to the suspended mass. e. The period is proportional to the square root of the length of the wire. f. The period is inversely proportional to the suspended mass.
Physics
1 answer:
madreJ [45]3 years ago
6 0

Answer:

Option (c) and (e)

Explanation:

In case of a simple pendulum having suspended mass 'M', if the length of the wire is 'L', and the acceleration due to gravity that acts on it is 'g', then the time period, 'T' of the pendulum for one complete oscillation is given by:

T = 2\pi \sqrt{\frac{L}{g}}

From the above equation, we can say that:

  • Time period of the pendulum does not depend on the suspended mass.
  • Time period is in direct proportion to the square root of the  wire length
  • Time period is depends inversely on the acceleration due to gravity.
You might be interested in
When we plot all the points that satisfy an equation or inequality we ___ it.
snow_tiger [21]
We<span> use </span>inequalities<span> when there is a range of possible answers for a situation. ... </span>inequalities—inequalities<span> that can be written in the form of a linear </span>equation. ... the bounded region, and anypoint<span> within this region </span>satisfies<span> the </span>inequality<span> x ≥ -</span><span>2. ... </span>All<span> of the </span>points<span> under the line are shaded; this is the range of </span>points<span> where the ...</span>
6 0
2 years ago
Read 2 more answers
A 0.0780 kg lemming runs off a
kotegsom [21]

Answer:

5.01 J

Explanation:

Info given:

mass (m) = 0.0780kg

height (h) = 5.36m

velocity (v) = 4.84 m/s

gravity (g) = 9.81m/s^2

1. First, solve for Kinetic energy (KE)

KE = 1/2mv^2

1/2(0.0780kg)(4.84m/s)^2 = 0.91 J

so KE = 0.91 J

2. Next, solve for Potential energy (PE)

PE = mgh

(0.0780kg)(9.81m/s^2)(5.36m) = 4.10 J

so PE = 4.10 J

3. Mechanical Energy , E = KE + PE

Plug in values for KE and PE

KE + PE = 0.91J + 4.10 J = 5.01 J

4 0
2 years ago
PLEASE HELP!
SashulF [63]

Answer:

They gon' hate me regardless, that's why I do what I do (what I do)

See me in person i'm flawless (I'm flawless girl), i might just snatch up your dude (hahahaha)

Explanation:

i just want to be....appreciated

3 0
3 years ago
A wire is stretched between two posts. Another wire is stretched between two posts that are twice as far apart. The tension in t
Margarita [4]

Answer: 996m/s

Explanation:

Formula for calculating velocity of wave in a stretched string is

V = √T/M where;

V is the velocity of wave

T is tension

M is the mass per unit length of the wire(m/L)

Since the second wire is twice as far apart as the first, it will be L2 = 2L1

Let V1 and V2 be the speed of the shorter and longer wire respectively

V1 = √T/M1... 1

V2 = √T/M2... 2

Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1

The equations will now become

249 = √T/(m/L1) ... 3

V2 = √T/(m/2L1)... 4

From 3,

249² = TL1/m...5

From 4,

V2²= 2TL1/m... 6

Dividing equation 5 by 6 we have;

249²/V2² = TL1/m×m/2TL1

{249/V2}² = 1/2

249/V2 = (1/2)²

249/V2 = 1/4

V2 = 249×4

V2 = 996m/s

Therefore the speed of the wave on the longer wire is 996m/s

3 0
3 years ago
Ryan is driving home from work and notices a deer leaping onto the road about 25 m in front of his car. He immediately applies t
Anvisha [2.4K]

Answer:

mu = 0.56

Explanation:

The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v^2=v_0^2+2ax\\

v: final speed = 0m/s (the car stops)

v_o: initial speed in the interval of interest = 60km/h

    = 60(1000m)/(3600s) = 16.66m/s

x: distance = 25m

BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

a=\frac{v^2-v_o^2}{2x}=\frac{0m^2/s^2-(16.66m/s)^2}{2(25m)}=-5.55\frac{m}{s^2}

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

F_f=ma=(1490kg)(5.55m/s^2)=8271.15N

Furthermore, you use the relation between the friction force and the friction coefficient:

F_f= \mu N=\mu mg\\\\\mu=\frac{F_f}{mg}=\frac{8271.15N}{(1490kg)(9.8m/s^2)}=0.56

hence, the friction coefficient is 0.56

6 0
3 years ago
Other questions:
  • What must you learn before you ca calculate you target heart rate for exercise
    5·1 answer
  • Is there a formula for the 2nd Law of Therodynamics, is so name it?
    14·1 answer
  • 100 POINTSSSS PLEASE HELP
    15·2 answers
  • A middle-aged man typically has poorer hearing than a middle-aged woman. In one case a woman can just begin to hear a musical to
    7·1 answer
  • Which describes the type of image formed by a plane mirror?
    12·2 answers
  • One problem that fireplace designers try to solve is how to get more of the fire's heat into the room. Where does the rest of th
    13·1 answer
  • Write two functions of kotokis​
    8·1 answer
  • what color does acid turn red litmus papera substance tested with blue litmus paper, is clear and colorless, and feels slippery.
    7·1 answer
  • plss answer what do yo call the substance from the male body that travel to the female body to make children​
    10·2 answers
  • 2. What is the mass of an object if it accelerates at 3 m/s2 and has a force of 1 N?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!