Hola!
Percentage Error is a measurement of the discrepancy between an observed and a true, or accepted value.
[ refer the attachment. ]
According to Question,
% error =

× 100
= 2.631 % = 2.7 % (approximately.)
hope it helps!
Answer:
Negative intrapleural pressure is the correct answer
Explanation:
Intrapleural pressure is more subatmospheric in the uppermost part of the thorax than in the lowermost parts in the standing horse.
Air moves from a region of higher pressure to one of lower pressure. Therefore, for air to be moved into or out of the lungs, a pressure difference between the atmosphere and the alveoli must be established. If there is no pressure difference, no airflow will occur.
Under normal circumstances, inspiration is accomplished by causing alveolar pressure to fall below atmospheric pressure. When the mechanics of breathing are being discussed, atmospheric pressure is conventionally referred to as 0 cm H2O, so lowering alveolar pressure below atmospheric pressure is known as negative-pressure breathing.
The complete ionization of KBr into its constituents
is:<span>
<span>KBr (s) --->
K+ (aq) + Br- (aq)</span></span>
<span>
During electrolysis, oxidation takes place at the anode electrode. This means
that an ion is stripped off its electron hence becoming more positive:
<span>2 Br- (aq) --->
Br2 (g) + 2e- </span></span>
We can see that Bromine gas Br2 is evolved at the anode.
<span>
<span>Meanwhile at the cathode, the reduction reaction occurs.
Which means that the electron from the anode electrode is used to make an ion
more negative:
<span>2K+ (aq) + 2e- ---> 2K (s) </span></span>
Hence, through reduction, solid potassium is deposited on the
plate.</span>
Half reactions:
<span>Anode: 2 Br- (aq) --->
Br2 (g) + 2e- </span>
<span>Cathode: 2K+ (aq) + 2e-
---> 2K (s) </span>
Answer:
The force of gravity on a 700 kg satellite if its 10 km above Earth's surface is given by
=
= 3984378 m / 
Explanation:
The force of gravity on a 700 kg satellite if its 10 km above Earth's surface is given by
=
= 3984378 m / 