Answer:
A geostationary orbit can be achieved only at an altitude very close to 35,786 kilometres (22,236 miles) and directly above the equator. This equates to an orbital speed of 3.07 kilometres per second (1.91 miles per second) and an orbital period of 1,436 minutes, one sidereal day
Explanation:
Longitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.
Answer:
The maximum height of the arrow is 42 (and the units given for the height)
Explanation:
Everything is easier if you make a graph, you can give values to t and replace that values in the function, for example:
When t=0

h(0)=26
If you give some values to t you can see how the trajectory of the arrow is (please look the graphic below)
Now, to find the maximum you have to find the derivative of the function that describes the height of the arrow:


Then you have to take the derivative, and equals to zero to find t:
-32t+32=0
-32t=32
t=1
That is in the time of 1 second the arrow has its maximum height.
Now you have to replace this value in the original function, to find the height of the arrow:

h(1)=-16+32+36
h(1)=42
Answer:

Explanation:
m = Mass of person = 70 kg
c = Specific heat of human body = 
= Change in temperature
Time taken is 1 hour
Heat is given by

The rise in temperature is 