First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.
Answer:
d= 1.56 m
Explanation:
In order to have a constructive interference, the path difference between the sources of the sound, must be equal to an even multiple of the semi-wavelength, as follows:
⇒ d = d₂ - d₁ = 2n*(λ/2)
The minimum possible value for this distance, is when n=1, as it can be seen here:
dmin = λ
In any wave, there exists a fixed relationship between the wave speed, the frequency and the wavelength:
v = λ*f
If v = vsound = 343 m/s, and f = 220 1/s, we can solve for λ:
λ =
⇒ dmin =λ = 1.56 m
Answer:
(a) A. Uniform line of charge and B. Uniformly charged sphere
(b) To three digits of precision:
λ = 1.50 * 10^-10 C/m
p = 2.81 * 10^-4 C/m^3
Explanation:
Answer:
A wedge is a machine that consists of two inclined planes, giving it a thin end and thick end. A wedge is used to cut or split apart objects. Force is applied to the thick end of the wedge, and the wedge applies force to the object along both of its sloping sides. This force causes the object to split apart