Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
Smallest drop: Water
Largest drop: Dirt
Explanation:
The heat needed to change the temperature of a sample is:
(1)
with Q the heat (added(+) or removed(-)), c specific heat, m the mass and
the change in temperature of the sample. So, if we solve (1) for
Sample A:


Sample B:


Sample C:


Note that the numbers 16744, 5400, 9450 are in the denominator of the expression
that gives the drop on temperature. so, if Q is the same for the three samples the smallest denominator gives the largest drop and vice versa.
So, the smallest drop is Sample A and the largest is Sample C.
(Important: The minus sign of
implies the temperature is dropping)
RDA stands for Recommended Daily Allowance. To determine the amount needed of a certain adult per day, we simply multiply the mass of the adult to the value of RDA. For this case, we do as follows:
Daily requirement = 12 mg/kg ( 78 kg ) = 936 mg of lysine = 936000 g
I believe the answer is A