Answer:

Explanation:
When she moved a distance of 1 m from mid point she observe first destructive interference due to two speakers
so we can say that path difference of sound due to two speakers will be equal to half of the wavelength
so path difference is given as

so it will be


now we know that


now frequency of sound is given as



You can use Vf^2-Vi^2 = 2ax
Vf^2 - 0 = 2(9.81)(25)
Or you can use energy
mgh = 1/2mv^2
2gh =v^2
Same thing
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>
Answer:
This question is incomplete
Explanation:
The question is incomplete because of the absence of options.
However, <u>the force that makes a paint cling to a wall is adhesive force</u>. Adhesive force is the force between two unlike substances like a liquid clinging to a solid surface.
The force between adhesives or glue is also the force that makes them sticky. <u>This force is referred to as cohesive force</u>. This is a force found in between similar molecules (unlike adhesive force found between dissimilar molecules).
<u>The force that makes wax to stick to a car is electromagnetic force</u>. This is a force between charged particles; whether they appear to be moving or not. These particles of opposite charges come together to form a neutral force. In this case, charged atoms of the car and the wax come together (which causes what we see as the wax sticking to the car).