According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.
Answer:
C.) The amount of mass used up in holding a nucleus together.
Explanation:
The mass defect of a nucleus represents the mass of the energy binding the nucleus. It is the difference between the mass of the nucleus and the sum of the masses of the nucleons of which it is composed.
Regards!
The gravitational force is inversely proportional to the
square of the distance between their centers. So the
force is greatest when the distance is zero.
Answer: 3.5 seconds
EXPLANATION:
Using the formula:
v = u + at
And taking the upwards direction as positive, we have the following information:
u = 35 m/s
a = -10m/s^2 (this is acceleration due to gravity)
At the top of its path, the apple will have a velocity of 0 m/s, therefore:
v = 0m/s
Once you substitute everything into the formula, you get:
0 = 35 + (-10)t
Therefore, t = 35/10 = 3.5 seconds
Good morning.
We have:

Where
j is the unitary vector in the direction of the
y-axis.
We have that

We add the vector
-a to both sides:

Therefore, the magnitude of
b is
47 units.