The mass of Zr deposited in the process is 41.4 g.
<h3>What is electrolytic cell?</h3>
An electrolytic cell is a chemical cell which produces electrical energy by non-spontaneous chemical processes.
From the question;
Zr^4+(aq) + 4e ------> Zr(s)
We know that;
91 g of Zr is deposited by 4(96500) C
xg of Zr is deposited by (7.92 × 6.16 × 60 × 60) C
xg = 91 g × (7.92 × 6.16 × 60 × 60) C/4(96500) C
x g = 41.4 g
Learn more about electrolysis: brainly.com/question/12054569
H = planks constant
<span>m = mass of the object </span>
<span>u = velocity of the object </span>
<span>h = 6.626 * 10^-34 J/s </span>
<span>the mass of an electron is 9.12*10^-31 kg </span>
<span>10% speed of light = 10% * 3*10^8 = 3*10^7 m/s, i dont have my graphing calc with me right now so i leave the technicalities up to you </span>
The Adirondacks is located there
There are 3 significant figures. Significant numbers are the numbers that build up your total number. 1-9 always count, 0 only counts if it’s after another number. For example: 0,901 has 3 significant numbers as does 0,910. 9,10 also has 3. 0,09 has just 1.
In general, we have this rate law express.:
![\mathrm{Rate} = k \cdot [A]^x [B]^y](https://tex.z-dn.net/?f=%5Cmathrm%7BRate%7D%20%3D%20k%20%5Ccdot%20%5BA%5D%5Ex%20%5BB%5D%5Ey)
we need to find x and y
ignore the given overall chemical reaction equation as we only preduct rate law from mechanism (not given to us).
then we go to compare two experiments in which only one concentration is changed
compare experiments 1 and 4 to find the effect of changing [B]
divide the larger [B] (experiment 4) by the smaller [B] (experiment 1) and call it Δ[B]
Δ[B]= 0.3 / 0.1 = 3
now divide experiment 4 by experient 1 for the given reaction rates, calling it ΔRate:
ΔRate = 1.7 × 10⁻⁵ / 5.5 × 10⁻⁶ = 34/11 = 3.090909...
solve for y in the equation
![\Delta \mathrm{Rate} = \Delta [B]^y](https://tex.z-dn.net/?f=%5CDelta%20%5Cmathrm%7BRate%7D%20%3D%20%5CDelta%20%5BB%5D%5Ey)

To this point,
![\mathrm{Rate} = k \cdot [A]^x [B]^1](https://tex.z-dn.net/?f=%5Cmathrm%7BRate%7D%20%3D%20k%20%5Ccdot%20%5BA%5D%5Ex%20%5BB%5D%5E1%20)
do the same to find x.
choose two experiments in which only the concentration of B is unchanged:
Dividing experiment 3 by experiment 2:
Δ[A] = 0.4 / 0.2 = 2
ΔRate = 8.8 × 10⁻⁵ / 2.2 × 10⁻⁵ = 4
solve for x for
![\Delta \mathrm{Rate} = \Delta [A]^x](https://tex.z-dn.net/?f=%5CDelta%20%5Cmathrm%7BRate%7D%20%3D%20%5CDelta%20%5BA%5D%5Ex)

the rate law is
Rate = k·[A]²[B]